login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A350122
Square array T(n,k), n >= 1, k >= 1, read by antidiagonals downwards, where T(n,k) = Sum_{j=1..n} floor(n/(2*j-1))^k.
4
1, 1, 2, 1, 4, 4, 1, 8, 10, 5, 1, 16, 28, 17, 7, 1, 32, 82, 65, 27, 9, 1, 64, 244, 257, 127, 41, 11, 1, 128, 730, 1025, 627, 225, 55, 12, 1, 256, 2188, 4097, 3127, 1313, 353, 70, 15, 1, 512, 6562, 16385, 15627, 7809, 2419, 522, 93, 17, 1, 1024, 19684, 65537, 78127, 46721, 16841, 4114, 759, 115, 19
OFFSET
1,3
FORMULA
G.f. of column k: (1/(1 - x)) * Sum_{j>=1} (j^k - (j - 1)^k) * x^j/(1 - x^(2*j)).
T(n,k) = Sum_{j=1..n} Sum_{d|j, j/d odd} d^k - (d - 1)^k.
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
2, 4, 8, 16, 32, 64, 128, ...
4, 10, 28, 82, 244, 730, 2188, ...
5, 17, 65, 257, 1025, 4097, 16385, ...
7, 27, 127, 627, 3127, 15627, 78127, ...
9, 41, 225, 1313, 7809, 46721, 280065, ...
11, 55, 353, 2419, 16841, 117715, 823673, ...
MATHEMATICA
T[n_, k_] := Sum[Floor[n/(2*j - 1)]^k, {j, 1, n}]; Table[T[k, n - k + 1], {n, 1, 11}, {k, 1, n}] // Flatten (* Amiram Eldar, Dec 17 2021 *)
PROG
(PARI) T(n, k) = sum(j=1, n, (n\(2*j-1))^k);
(PARI) T(n, k) = sum(j=1, n, sumdiv(j, d, j/d%2*(d^k-(d-1)^k)));
CROSSREFS
Columns k=1..3 give A060831, A350143, A350144.
T(n,n) gives A350145.
Cf. A344725.
Sequence in context: A220537 A229717 A122438 * A156708 A131250 A140693
KEYWORD
nonn,tabl
AUTHOR
Seiichi Manyama, Dec 16 2021
STATUS
approved