|
|
A350143
|
|
a(n) = Sum_{k=1..n} floor(n/(2*k-1))^2.
|
|
2
|
|
|
1, 4, 10, 17, 27, 41, 55, 70, 93, 115, 137, 167, 193, 223, 267, 298, 332, 381, 419, 465, 525, 571, 617, 679, 738, 792, 868, 930, 988, 1080, 1142, 1205, 1297, 1367, 1459, 1560, 1634, 1712, 1820, 1914, 1996, 2120, 2206, 2300, 2450, 2544, 2638, 2764, 2875, 2996, 3136, 3246
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
LINKS
|
|
|
FORMULA
|
G.f.: (1/(1 - x)) * Sum_{k>=1} (2*k - 1) * x^k/(1 - x^(2*k)).
|
|
MATHEMATICA
|
a[n_] := Sum[Floor[n/(2*k - 1)]^2, {k, 1, n}]; Array[a, 50] (* Amiram Eldar, Dec 17 2021 *)
|
|
PROG
|
(PARI) a(n) = sum(k=1, n, (n\(2*k-1))^2);
(PARI) a(n) = sum(k=1, n, sumdiv(k, d, k/d%2*(2*d-1)));
(PARI) my(N=66, x='x+O('x^N)); Vec(sum(k=1, N, (2*k-1)*x^k/(1-x^(2*k)))/(1-x))
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|