Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #45 Dec 17 2021 11:07:20
%S 1,1,2,1,4,4,1,8,10,5,1,16,28,17,7,1,32,82,65,27,9,1,64,244,257,127,
%T 41,11,1,128,730,1025,627,225,55,12,1,256,2188,4097,3127,1313,353,70,
%U 15,1,512,6562,16385,15627,7809,2419,522,93,17,1,1024,19684,65537,78127,46721,16841,4114,759,115,19
%N Square array T(n,k), n >= 1, k >= 1, read by antidiagonals downwards, where T(n,k) = Sum_{j=1..n} floor(n/(2*j-1))^k.
%F G.f. of column k: (1/(1 - x)) * Sum_{j>=1} (j^k - (j - 1)^k) * x^j/(1 - x^(2*j)).
%F T(n,k) = Sum_{j=1..n} Sum_{d|j, j/d odd} d^k - (d - 1)^k.
%e Square array begins:
%e 1, 1, 1, 1, 1, 1, 1, ...
%e 2, 4, 8, 16, 32, 64, 128, ...
%e 4, 10, 28, 82, 244, 730, 2188, ...
%e 5, 17, 65, 257, 1025, 4097, 16385, ...
%e 7, 27, 127, 627, 3127, 15627, 78127, ...
%e 9, 41, 225, 1313, 7809, 46721, 280065, ...
%e 11, 55, 353, 2419, 16841, 117715, 823673, ...
%t T[n_, k_] := Sum[Floor[n/(2*j - 1)]^k, {j, 1, n}]; Table[T[k, n - k + 1], {n, 1, 11}, {k, 1, n}] // Flatten (* _Amiram Eldar_, Dec 17 2021 *)
%o (PARI) T(n, k) = sum(j=1, n, (n\(2*j-1))^k);
%o (PARI) T(n, k) = sum(j=1, n, sumdiv(j, d, j/d%2*(d^k-(d-1)^k)));
%Y Columns k=1..3 give A060831, A350143, A350144.
%Y T(n,n) gives A350145.
%Y Cf. A344725.
%K nonn,tabl
%O 1,3
%A _Seiichi Manyama_, Dec 16 2021