login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A267864
Denominator triangle for A267863: T(n, k) = denominator((n - 2*k)/(2*n)), n >= 1, k = 1, ..., n.
5
2, 1, 2, 6, 6, 2, 4, 1, 4, 2, 10, 10, 10, 10, 2, 3, 6, 1, 6, 3, 2, 14, 14, 14, 14, 14, 14, 2, 8, 4, 8, 1, 8, 4, 8, 2, 18, 18, 6, 18, 18, 6, 18, 18, 2, 5, 10, 5, 10, 1, 10, 5, 10, 5, 2, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 2, 12, 3, 4, 6, 12, 1, 12, 6, 4, 3, 12, 2
OFFSET
1,1
COMMENTS
For details and the Hurwitz reference see A267863.
FORMULA
T(n, k) = denominator((n - 2*k)/(2*n)), n >= 1, k = 1, ..., n.
EXAMPLE
The triangle begins:
m\a 1 2 3 4 5 6 7 8 9 10 ...
1: 2
2: 1 2
3: 6 6 2
4: 4 1 4 2
5: 10 10 10 10 2
6: 3 6 1 6 3 2
7: 14 14 14 14 14 14 2
8: 8 4 8 1 8 4 8 2
9: 18 18 6 18 18 6 18 18 2
10: 5 10 5 10 1 10 5 10 5 2
...
For the beginning of the rational triangle R(m, a) see A267863.
MATHEMATICA
R[m_, a_] := HurwitzZeta[0, a/m]; (* or *) R[m_, a_] := (m - 2*a)/(2*m); Table[R[m, a] // Denominator, {m, 1, 12}, {a, 1, m}] // Flatten (* Jean-François Alcover, Feb 26 2016 *)
PROG
(Magma)
A267864:= func< n, k | Denominator((n-2*k)/(2*n)) >;
[A267864(n, k): k in [1..n], n in [1..12]]; // G. C. Greubel, Oct 04 2024
(SageMath)
def A267864(n, k): return denominator((n-2*k)/(2*n))
flatten([[A267864(n, k) for k in range(1, n+1)] for n in range(1, 13)]) # G. C. Greubel, Oct 04 2024
CROSSREFS
Cf. A267863.
Sequence in context: A300769 A300639 A301361 * A336524 A219570 A285030
KEYWORD
nonn,frac,tabl,easy
AUTHOR
Wolfdieter Lang, Feb 18 2016
STATUS
approved