OFFSET
1,1
COMMENTS
For details and the Hurwitz reference see A267863.
LINKS
G. C. Greubel, Rows n = 1..50 of the triangle, flattened
FORMULA
T(n, k) = denominator((n - 2*k)/(2*n)), n >= 1, k = 1, ..., n.
EXAMPLE
The triangle begins:
m\a 1 2 3 4 5 6 7 8 9 10 ...
1: 2
2: 1 2
3: 6 6 2
4: 4 1 4 2
5: 10 10 10 10 2
6: 3 6 1 6 3 2
7: 14 14 14 14 14 14 2
8: 8 4 8 1 8 4 8 2
9: 18 18 6 18 18 6 18 18 2
10: 5 10 5 10 1 10 5 10 5 2
...
For the beginning of the rational triangle R(m, a) see A267863.
MATHEMATICA
R[m_, a_] := HurwitzZeta[0, a/m]; (* or *) R[m_, a_] := (m - 2*a)/(2*m); Table[R[m, a] // Denominator, {m, 1, 12}, {a, 1, m}] // Flatten (* Jean-François Alcover, Feb 26 2016 *)
PROG
(Magma)
A267864:= func< n, k | Denominator((n-2*k)/(2*n)) >;
[A267864(n, k): k in [1..n], n in [1..12]]; // G. C. Greubel, Oct 04 2024
(SageMath)
def A267864(n, k): return denominator((n-2*k)/(2*n))
flatten([[A267864(n, k) for k in range(1, n+1)] for n in range(1, 13)]) # G. C. Greubel, Oct 04 2024
CROSSREFS
KEYWORD
AUTHOR
Wolfdieter Lang, Feb 18 2016
STATUS
approved