login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A267862
Number of planar lattice convex polygonal lines joining the origin and the point (n,n).
1
1, 2, 5, 13, 32, 77, 178, 399, 877, 1882, 3959, 8179, 16636, 33333, 65894, 128633, 248169, 473585, 894573, 1673704, 3103334, 5705383, 10405080, 18831761, 33836627, 60378964, 107035022, 188553965, 330166814, 574815804, 995229598, 1714004131, 2936857097
OFFSET
0,2
COMMENTS
In other words, we are counting walks on the integer lattice N^2 that start at (0,0) and end at (n,n); they may take arbitrary steps, but the slopes of the steps in the walk must strictly increase. As a result, we obtain a convex polygon when joining the two endpoints of the walk with the point (0,n).
LINKS
J. Bureaux, N. Enriquez, On the number of lattice convex chains, arXiv:1603.09587 [math.PR], 2016.
FORMULA
a(n) = [x^n*y^n] 1/((1-x)*(1-y)*Product_{i>0,j>0,gcd(i,j)=1} (1-x^i*y^j)).
An asymptotic formula for a(n) is given by Bureaux and Enriquez: a(n) ~ e^(-2*zeta'(-1))/((2*Pi)^(7/6)*sqrt(3)*kappa^(1/18)*n^(17/18)) * e^(3*kappa^(1/3)*n^(2/3)+...) where kappa := zeta(3)/zeta(2) and zeta denotes the Riemann zeta function.
EXAMPLE
The two walks for n = 1 are
(0,0) -> (1,1)
(0,0) -> (1,0) -> (1,1).
The five possibilities for n = 2 are
(0,0) -> (2,2)
(0,0) -> (1,0) -> (2,1) -> (2,2)
(0,0) -> (1,0) -> (2,2)
(0,0) -> (2,0) -> (2,2)
(0,0) -> (2,1) -> (2,2).
MATHEMATICA
a[i_Integer, j_Integer, s_] := a[i, j, s] = If[i === 0, 1, Sum[a[i - x, j - y, y/x], {x, 1, i}, {y, Floor[s*x] + 1, j}]]; a[n_Integer] := a[n] = 1 + Sum[a[n - x, n - y, y/x], {x, 1, n}, {y, 0, x - 1}]; Flatten[{1, Table[a[n], {n, 30}]}]
nmax = 20; p = (1 - x)*(1 - y); Do[Do[p = Expand[p*If[GCD[i, j] == 1, (1 - x^i*y^j), 1]]; p = Select[p, (Exponent[#, x] <= nmax) && (Exponent[#, y] <= nmax) &], {i, 1, nmax}], {j, 1, nmax}]; p = Expand[Normal[Series[1/p, {x, 0, nmax}, {y, 0, nmax}]]]; p = Select[p, Exponent[#, x] == Exponent[#, y] &]; Flatten[{1, Table[Coefficient[p, x^n*y^n], {n, 1, nmax}]}] (* Vaclav Kotesovec, Apr 08 2016 *)
CROSSREFS
KEYWORD
nonn,walk
AUTHOR
Christoph Koutschan, Apr 07 2016
STATUS
approved