login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A098156 Interleave n+1 and 2n+1 and take binomial transform. 5
1, 2, 5, 13, 32, 76, 176, 400, 896, 1984, 4352, 9472, 20480, 44032, 94208, 200704, 425984, 901120, 1900544, 3997696, 8388608, 17563648, 36700160, 76546048, 159383552, 331350016, 687865856, 1426063360, 2952790016, 6106906624 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Binomial transform of A029579.

An elephant sequence, see A175655. For the central square 16 A[5] vectors, with decimal values between 59 and 440, lead to this sequence (without a(1)). For the corner squares these vectors lead to the companion sequence A066373 (with a leading 1 added). [Johannes W. Meijer, Aug 15 2010]

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

David Anderson, E. S. Egge, M. Riehl, L. Ryan, R. Steinke, Y. Vaughan, Pattern Avoiding Linear Extensions of Rectangular Posets, arXiv preprint arXiv:1605.06825 [math.CO], 2016.

Index entries for linear recurrences with constant coefficients, signature (4,-4).

FORMULA

G.f.: (1-2*x+x^2+x^3)/(1-2*x)^2.

a(n) = 0^n/2+sum{k=0..n, binomial(-1)^(n-k)*k)}/4+2^n/2+3n*2^(n-1)/4.

a(n) = sum{j=0..n, sum{k=0..n, binomial(n, 2(k-j)}}.

a(n) = sum{k=0..n, sum{i=0..k, C(n, 2i)}}. - Paul Barry, Jan 13 2005

a(n) = 2^(n-3)*(3*n+4) for n>=2. - Philip B. Zhang, May 25 2016

E.g.f.: (2 + x + (2 + 3*x)*exp(2*x))/4. - Ilya Gutkovskiy, May 31 2016

MATHEMATICA

CoefficientList[Series[(1 - 2 x + x^2 + x^3) / (1 - 2 x)^2, {x, 0, 40}], x] (* Vincenzo Librandi, Jul 21 2013 *)

CROSSREFS

Sequence in context: A086758 A179257 A116702 * A267862 A098586 A199812

Adjacent sequences:  A098153 A098154 A098155 * A098157 A098158 A098159

KEYWORD

easy,nonn

AUTHOR

Paul Barry, Aug 29 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 22 11:11 EDT 2018. Contains 316438 sequences. (Running on oeis4.)