login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of planar lattice convex polygonal lines joining the origin and the point (n,n).
1

%I #29 Apr 08 2016 15:49:12

%S 1,2,5,13,32,77,178,399,877,1882,3959,8179,16636,33333,65894,128633,

%T 248169,473585,894573,1673704,3103334,5705383,10405080,18831761,

%U 33836627,60378964,107035022,188553965,330166814,574815804,995229598,1714004131,2936857097

%N Number of planar lattice convex polygonal lines joining the origin and the point (n,n).

%C In other words, we are counting walks on the integer lattice N^2 that start at (0,0) and end at (n,n); they may take arbitrary steps, but the slopes of the steps in the walk must strictly increase. As a result, we obtain a convex polygon when joining the two endpoints of the walk with the point (0,n).

%H Vaclav Kotesovec, <a href="/A267862/b267862.txt">Table of n, a(n) for n = 0..100</a>

%H J. Bureaux, N. Enriquez, <a href="http://arxiv.org/abs/1603.09587">On the number of lattice convex chains</a>, arXiv:1603.09587 [math.PR], 2016.

%F a(n) = [x^n*y^n] 1/((1-x)*(1-y)*Product_{i>0,j>0,gcd(i,j)=1} (1-x^i*y^j)).

%F An asymptotic formula for a(n) is given by Bureaux and Enriquez: a(n) ~ e^(-2*zeta'(-1))/((2*Pi)^(7/6)*sqrt(3)*kappa^(1/18)*n^(17/18)) * e^(3*kappa^(1/3)*n^(2/3)+...) where kappa := zeta(3)/zeta(2) and zeta denotes the Riemann zeta function.

%e The two walks for n = 1 are

%e (0,0) -> (1,1)

%e (0,0) -> (1,0) -> (1,1).

%e The five possibilities for n = 2 are

%e (0,0) -> (2,2)

%e (0,0) -> (1,0) -> (2,1) -> (2,2)

%e (0,0) -> (1,0) -> (2,2)

%e (0,0) -> (2,0) -> (2,2)

%e (0,0) -> (2,1) -> (2,2).

%t a[i_Integer, j_Integer, s_] := a[i, j, s] = If[i === 0, 1, Sum[a[i - x, j - y, y/x], {x, 1, i}, {y, Floor[s*x] + 1, j}]]; a[n_Integer] := a[n] = 1 + Sum[a[n - x, n - y, y/x], {x, 1, n}, {y, 0, x - 1}]; Flatten[{1, Table[a[n], {n, 30}]}]

%t nmax = 20; p = (1 - x)*(1 - y); Do[Do[p = Expand[p*If[GCD[i, j] == 1, (1 - x^i*y^j), 1]]; p = Select[p, (Exponent[#, x] <= nmax) && (Exponent[#, y] <= nmax) &], {i, 1, nmax}], {j, 1, nmax}]; p = Expand[Normal[Series[1/p, {x, 0, nmax}, {y, 0, nmax}]]]; p = Select[p, Exponent[#, x] == Exponent[#, y] &]; Flatten[{1, Table[Coefficient[p, x^n*y^n], {n, 1, nmax}]}] (* _Vaclav Kotesovec_, Apr 08 2016 *)

%Y Cf. A002774, A090806, A219554.

%K nonn,walk

%O 0,2

%A _Christoph Koutschan_, Apr 07 2016