login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f. (4*x+3)/(2*(x+1))*(1+1/sqrt(-4*x^4-4*x^3+1)).
1

%I #18 Feb 16 2020 04:59:54

%S 3,1,-1,4,3,1,8,22,11,31,99,111,144,456,734,904,2155,4285,5921,11173,

%T 23603,37489,63161,129031,227072,375376,719432,1335478,2264118,

%U 4126266,7759608,13613744,24219051,45127317,81256395,144053547,264457881

%N G.f. (4*x+3)/(2*(x+1))*(1+1/sqrt(-4*x^4-4*x^3+1)).

%F a(n) = n*sum_{m=0..(n-1)/2} binomial(n-2*m,m)*binomial(2*m-1,n-2*m-1)/(n-2*m), n>0, a(0)=3.

%F G.f.: A(x)=x*B'(x)/B(x), where B(x) is g.f. of A025277.

%F D-finite with recurrence: 3*n*a(n) +(7*n-8)*a(n-1) +4*(n-2)*a(n-2) +6*(-2*n+3)*a(n-3) +2*(-20*n+49)*a(n-4) +4*(-11*n+36)*a(n-5) +16*(-n+4)*a(n-6)=0. - _R. J. Mathar_, Nov 25 2014, corrected Feb 16 2020

%p A247169 := proc(n)

%p if n = 0 then

%p 3;

%p else

%p add( binomial(n-2*m,m)*binomial(2*m-1,n-2*m-1)/(n-2*m),m=0..floor((n-1)/2)) ;

%p n*% ;

%p end if;

%p end proc:

%p seq(A247169(n),n=0..50) ;

%o (Maxima)

%o a(n):=if n=0 then 3 else (n*sum((binomial(n-2*m,m)*binomial(2*m-1,n-2*m-1))/(n-2*m),m,0,(n-1)/2));

%Y Cf. A025277

%K sign

%O 0,1

%A _Vladimir Kruchinin_, Nov 21 2014