login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A248795
Numbers n such that Product_{d|n} phi(d) = Product_{d|(n+1)} phi(d) where phi(x) = Euler totient function (A000010).
4
1, 3, 5, 15, 255, 65535, 2200694, 2619705, 6372794, 40588485, 76466985, 81591194, 118018094, 206569605, 470542485, 525644385, 726638834, 791937614, 971122514, 991172805
OFFSET
1,2
COMMENTS
Numbers n such that A029940(n) = A029940(n+1).
4294967295 is in this sequence.
FORMULA
a(n) = A248796(n)-2.
EXAMPLE
15 is in the sequence because A029940(15) = A029940(16) = 64.
MATHEMATICA
a248795[n_Integer] := Select[Range[n],
Product[EulerPhi[i], {i, Divisors[#]}] ==
Product[EulerPhi[j], {j, Divisors[# + 1]}] &]; a248795[10^5] (* Michael De Vlieger, Nov 30 2014 *)
PROG
(Magma) [n: n in [1..100000] | (&*[EulerPhi(d): d in Divisors(n)]) eq (&*[EulerPhi(d): d in Divisors(n+1)])]
(PARI) lista(nn) = {d = divisors(1); vcur = prod(k=1, #d, eulerphi(d[k])); for (n=2, nn, d = divisors(n); vnext = prod(k=1, #d, eulerphi(d[k])); if (vnext == vcur, print1(n-1, ", ")); vcur = vnext; ); } \\ Michel Marcus, Nov 23 2014
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Jaroslav Krizek, Nov 19 2014
EXTENSIONS
a(7)-a(9) from Michel Marcus, Nov 21 2014
a(10)-a(20) from Michel Marcus, Nov 23 2014
STATUS
approved