login
A378176
Sum over all multiplicative partitions mu of n (with factors > 1) of the encoding as Product_{j in mu} prime(j).
3
1, 3, 5, 16, 11, 28, 17, 67, 48, 62, 31, 156, 41, 94, 102, 303, 59, 270, 67, 334, 158, 172, 83, 743, 218, 224, 343, 508, 109, 707, 127, 1173, 292, 316, 336, 1651, 157, 364, 372, 1587, 179, 1091, 191, 926, 960, 448, 211, 3468, 516, 1202, 528, 1198, 241, 2209
OFFSET
1,2
LINKS
FORMULA
a(prime(n)) = a(A000040(n)) = A006450(n).
EXAMPLE
The multiplicative partitions of n=8 are {[8], [4,2], [2,2,2]}, encodings give {prime(8), prime(4)*prime(2), prime(2)^3} = {19, 7*3, 3^3} = {19, 21, 27}; the sum gives a(8) = 67.
MAPLE
b:= proc(n) option remember; `if`(n=1, {1}, {seq(map(x-> x*
ithprime(d), b(n/d))[], d=numtheory[divisors](n) minus {1})})
end:
a:= n-> add(i, i=b(n)):
seq(a(n), n=1..54);
CROSSREFS
Row sums of A378175.
Sequence in context: A175138 A248795 A215444 * A325257 A006593 A115724
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Nov 18 2024
STATUS
approved