login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A138348
Lesser of twin primes such that both twin primes have no bases b, 1 < b < p-1, in which p is a palindrome.
2
137, 4337, 8291, 9419, 10937, 13757, 19427, 20981, 36011, 38327, 43397, 59441, 71327, 74717, 76871, 90437, 91571, 117239, 120941, 121019, 167021, 181787, 191561, 196871, 197597, 221717, 228881, 239387, 240881, 271277, 279119, 289031
OFFSET
1,1
COMMENTS
Also primes in A016038 which are 2 less than their immediate successors.
Prime index of A138348: {33, 592, 1040, 1165, 1328, 1627, 2201, 2359, 3826, 4046, 4524, 6009, 7060, 7367, 7557, 8756, 8852, ...
LINKS
Robert G. Wilson v, Table of n, a(n) for n = 1..95
MATHEMATICA
palindromicBases[n_] := Module[{p}, Table[p = IntegerDigits[n, b]; If[p == Reverse[p], {b, p}, Sequence @@ {}], {b, 2, n - 2}]]; lst = {}; Do[ If[ Length@ palindromicBases@ Prime@ n == 0, AppendTo[lst, Prime@n]], {n, 22189}]; lst[[ # ]] & /@ Select[ Range@ Length@ lst - 1, lst[[ # ]] + 2 == lst[[ # + 1]] &]
f[n_] := Block[{k = 2}, While[id = IntegerDigits[n, k]; id != Reverse@ id, k++ ]; k]; lst = {2}; Do[p = Prime@ n; If[ f@p == p - 1, AppendTo[lst, p]; Print@p], {n, 128149}]; lst[[ # ]] & /@ Select[Range@11284, lst[[ # ]] + 2 == lst[[ # + 1]] &]
nbQ[n_]:=NoneTrue[Table[IntegerDigits[n, b], {b, 2, n-2}], #==Reverse[#]&] && NoneTrue[ Table[IntegerDigits[n+2, b], {b, 2, n}], #==Reverse[#]&]; Select[ Select[Partition[Prime[Range[26000]], 2, 1], #[[2]]-#[[1]]==2&][[All, 1]], nbQ] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jun 03 2021 *)
CROSSREFS
Sequence in context: A190307 A094488 A221346 * A278175 A261973 A357131
KEYWORD
nonn,base
AUTHOR
Robert G. Wilson v, Mar 09 2008
STATUS
approved