login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A346214
Triangular array read by rows. T(n,k) is the number of nilpotent n X n matrices over GF(2) with index k, 1 <= k <= n, n >= 1.
2
1, 1, 3, 1, 21, 42, 1, 315, 1260, 2520, 1, 6975, 104160, 312480, 624960, 1, 373023, 23436000, 104993280, 314979840, 629959680, 1, 32252031, 9175162752, 121912197120, 426692689920, 1280078069760, 2560156139520
OFFSET
1,3
COMMENTS
The index of a nilpotent matrix A is the smallest positive integer k such that A^k = 0.
EXAMPLE
1,
1, 3,
1, 21, 42,
1, 315, 1260, 2520,
1, 6975, 104160, 312480, 624960
MATHEMATICA
b[p_, i_] := Count[p, i]; d[p_, i_] := Sum[j b[p, j], {j, 1, i}] + i Sum[b[p, j], {j, i + 1, Total[p]}]; aut[deg_, p_] := Product[Product[ q^(d[p, i] deg) - q^((d[p, i] - k) deg), {k, 1, b[p, i]}], {i, 1, Total[p]}] /. q -> 2; gl2 =
Table[Product[2^n - 2^i, {i, 0, n - 1}], {n, 1, 50}]; Table[Table[
Sum[gl2[[n]]/ aut[1, Select[IntegerPartitions[n], #[[1]] == k &][[i]]], {i, 1,
Length[Select[IntegerPartitions[n], #[[1]] == k &]]}], {k, 1, n}], {n, 1, 7}] // Grid
CROSSREFS
Cf. A083402 (main diagonal), A053763 (row sums).
Sequence in context: A138354 A193632 A346412 * A190962 A010291 A372167
KEYWORD
nonn,tabl,more
AUTHOR
Geoffrey Critzer, Jul 10 2021
STATUS
approved