login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangular array read by rows. T(n,k) is the number of nilpotent n X n matrices over GF(2) with index k, 1 <= k <= n, n >= 1.
2

%I #17 Jul 21 2021 09:28:38

%S 1,1,3,1,21,42,1,315,1260,2520,1,6975,104160,312480,624960,1,373023,

%T 23436000,104993280,314979840,629959680,1,32252031,9175162752,

%U 121912197120,426692689920,1280078069760,2560156139520

%N Triangular array read by rows. T(n,k) is the number of nilpotent n X n matrices over GF(2) with index k, 1 <= k <= n, n >= 1.

%C The index of a nilpotent matrix A is the smallest positive integer k such that A^k = 0.

%e 1,

%e 1, 3,

%e 1, 21, 42,

%e 1, 315, 1260, 2520,

%e 1, 6975, 104160, 312480, 624960

%t b[p_, i_] := Count[p, i]; d[p_, i_] := Sum[j b[p, j], {j, 1, i}] + i Sum[b[p, j], {j, i + 1, Total[p]}];aut[deg_, p_] := Product[Product[ q^(d[p, i] deg) - q^((d[p, i] - k) deg), {k, 1, b[p, i]}], {i, 1, Total[p]}] /. q -> 2; gl2 =

%t Table[Product[2^n - 2^i, {i, 0, n - 1}], {n, 1, 50}]; Table[Table[

%t Sum[gl2[[n]]/ aut[1, Select[IntegerPartitions[n], #[[1]] == k &][[i]]], {i, 1,

%t Length[Select[IntegerPartitions[n], #[[1]] == k &]]}], {k, 1, n}], {n, 1, 7}] // Grid

%Y Cf. A083402 (main diagonal), A053763 (row sums).

%K nonn,tabl,more

%O 1,3

%A _Geoffrey Critzer_, Jul 10 2021