login
A346215
a(n) is the start of the first maximal string of n consecutive primes such that the sum of squares of pairs of consecutive primes in the string is always divisible by 10.
0
2, 53, 7, 17, 347, 373, 3181, 431, 1511, 61, 2213, 14551, 32779, 12841, 23911, 31121, 1764349, 90001, 3037297, 5031121, 5934899, 17385223, 63052261, 23673281, 80690807, 1191279451, 7594193, 850110593, 300482639, 23554787897, 8785664509, 20835779213, 165645916039
OFFSET
1,1
EXAMPLE
a(4) = 17 because the four consecutive primes 17, 19, 23, 29 have 17^2 + 19^2, 19^2 + 23^2, 23^2 + 29^2 are all divisible by 10, and this is maximal because 13^2 + 17^2 and 29^2 + 31^2 are not divisible by 10.
MAPLE
P:= select(isprime, [2, seq(i, i=3..10^7, 2)]):
N:= nops(P):
R:= select(t -> P[t]^2 + P[t+1]^2 mod 10 = 0, [$1..N-1]):
nR:=nops(R):
V:= Vector(100): V[1]:= 2:
state:= 1: p:= P[R[1]];
for i from 2 to nR do
if R[i] = R[i-1]+1 then state:= state+1
else if V[state+1] = 0 then V[state+1]:= p fi;
state:= 1;
p:= P[R[i]];
fi
od:
V:= convert(V, list):
member(0, V, 'm'):
V[1..m-1];
CROSSREFS
Sequence in context: A248987 A179616 A200087 * A139841 A167771 A062853
KEYWORD
nonn
AUTHOR
J. M. Bergot and Robert Israel, Aug 22 2021
EXTENSIONS
a(22)-a(33) from Martin Ehrenstein, Sep 01 2021
STATUS
approved