login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A139841
Primes of the form 2x^2 + 51y^2.
2
2, 53, 59, 83, 101, 149, 179, 251, 293, 389, 443, 461, 467, 491, 509, 557, 563, 587, 659, 701, 773, 797, 971, 1019, 1109, 1181, 1259, 1277, 1283, 1301, 1307, 1373, 1427, 1613, 1619, 1667, 1709, 1733, 1787, 1811, 1973, 1997, 2027, 2099, 2141
OFFSET
1,1
COMMENTS
Discriminant = -408. See A139827 for more information.
LINKS
Vincenzo Librandi and Ray Chandler, Table of n, a(n) for n = 1..10000 [First 1000 terms from Vincenzo Librandi]
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
FORMULA
The primes are congruent to {2, 35, 53, 59, 77, 83, 101, 149, 155, 179, 203, 251, 293, 341, 365, 389, 395} (mod 408).
MATHEMATICA
QuadPrimes2[2, 0, 51, 10000] (* see A106856 *)
PROG
(Magma) [ p: p in PrimesUpTo(3000) | p mod 408 in {2, 35, 53, 59, 77, 83, 101, 149, 155, 179, 203, 251, 293, 341, 365, 389, 395}]; // Vincenzo Librandi, Jul 29 2012
(PARI) list(lim)=my(v=List([2]), s=[35, 53, 59, 77, 83, 101, 149, 155, 179, 203, 251, 293, 341, 365, 389, 395]); forprime(p=53, lim, if(setsearch(s, p%408), listput(v, p))); Vec(v) \\ Charles R Greathouse IV, Feb 10 2017
CROSSREFS
Sequence in context: A179616 A200087 A346215 * A167771 A062853 A059703
KEYWORD
nonn,easy
AUTHOR
T. D. Noe, May 02 2008
STATUS
approved