login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A372167
Irregular triangle read by rows where T(n,k) is the number of simple graphs covering n vertices with exactly k triangles.
15
1, 0, 1, 3, 1, 22, 12, 6, 0, 1, 237, 220, 165, 70, 35, 30, 0, 10, 0, 0, 1, 3961, 5460, 5830, 4140, 2805, 2112, 1230, 720, 600, 180, 230, 60, 45, 60, 0, 0, 15, 0, 0, 0, 1
OFFSET
0,4
FORMULA
Inverse binomial transform of columns of A372170.
EXAMPLE
Triangle begins:
1
0
1
3 1
22 12 6 0 1
237 220 165 70 35 30 0 10 0 0 1
Row k = 4 counts the following graphs:
12-34 12-13-14-23 12-13-14-23-24 . 12-13-14-23-24-34
13-24 12-13-14-24 12-13-14-23-34
14-23 12-13-14-34 12-13-14-24-34
12-13-14 12-13-23-24 12-13-23-24-34
12-13-24 12-13-23-34 12-14-23-24-34
12-13-34 12-14-23-24 13-14-23-24-34
12-14-23 12-14-24-34
12-14-34 12-23-24-34
12-23-24 13-14-23-34
12-23-34 13-14-24-34
12-24-34 13-23-24-34
13-14-23 14-23-24-34
13-14-24
13-23-24
13-23-34
13-24-34
14-23-24
14-23-34
14-24-34
12-13-24-34
12-14-23-34
13-14-23-24
MATHEMATICA
cys[y_]:=Select[Subsets[Union@@y, {3}], MemberQ[y, {#[[1]], #[[2]]}] && MemberQ[y, {#[[1]], #[[3]]}] && MemberQ[y, {#[[2]], #[[3]]}]&];
Table[Length[Select[Subsets[Subsets[Range[n], {2}]], Union@@#==Range[n]&&Length[cys[#]]==k&]], {n, 0, 5}, {k, 0, Binomial[n, 3]}]
CROSSREFS
Row sums are A006129, unlabeled A002494.
Row lengths are A050407.
Counting edges instead of triangles gives A054548, unlabeled A370167.
Column k = 0 is A372168 (non-covering A213434), unlabeled A372169.
Covering case of A372170, unlabeled A263340.
Column k = 1 is A372171 (non-covering A372172), unlabeled A372174.
The unlabeled version is A372173.
For all cycles (not just triangles) we have A372175, non-covering A372176.
A001858 counts acyclic graphs, unlabeled A005195.
A006125 counts simple graphs, unlabeled A000088.
A105784 counts acyclic covering graphs, unlabeled A144958.
Sequence in context: A346214 A190962 A010291 * A370948 A306619 A335644
KEYWORD
nonn,tabf,more
AUTHOR
Gus Wiseman, Apr 23 2024
STATUS
approved