login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A372170
Irregular triangle read by rows where T(n,k) is the number of labeled simple graphs with n vertices and exactly k triangles, 0 <= k <= binomial(n,3).
16
1, 1, 2, 7, 1, 41, 16, 6, 0, 1, 388, 290, 195, 70, 40, 30, 0, 10, 0, 0, 1, 5789, 6980, 6910, 4560, 3030, 2292, 1230, 780, 600, 180, 236, 60, 45, 60, 0, 0, 15, 0, 0, 0, 1, 133501, 235270, 313705, 302505, 260890, 222509, 174615, 126780, 102970, 67165, 50134, 37485, 20370, 17990, 11445, 6552, 4515, 3570, 1680, 1785, 154, 735, 455, 140, 0, 105, 105, 0, 0, 0, 21, 0, 0, 0, 0, 1
OFFSET
0,3
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..340 (rows 0..10)
FORMULA
Binomial transform of columns of A372167.
EXAMPLE
Triangle begins:
1
1
2
7 1
41 16 6 0 1
388 290 195 70 40 30 0 10 0 0 1
...
For example, the T(4,1) = 16 graphs are:
12-13-23
12-14-24
13-14-34
23-24-34
12-13-14-23
12-13-14-24
12-13-14-34
12-13-23-24
12-13-23-34
12-14-23-24
12-14-24-34
12-23-24-34
13-14-23-34
13-14-24-34
13-23-24-34
14-23-24-34
MATHEMATICA
cys[y_]:=Select[Subsets[Union@@y, {3}], MemberQ[y, {#[[1]], #[[2]]}]&&MemberQ[y, {#[[1]], #[[3]]}]&&MemberQ[y, {#[[2]], #[[3]]}]&];
Table[Length[Select[Subsets[Subsets[Range[n], {2}]], Length[cys[#]]==k&]], {n, 0, 5}, {k, 0, Binomial[n, 3]}]
CROSSREFS
Row sums are A006125, covering A006129.
Row lengths are A050407.
Counting edges instead of triangles gives A084546, covering A054548.
Column k = 0 is A213434, covering A372168.
The unlabeled version is A263340.
The covering case is A372167, unlabeled A372173.
Column k = 1 is A372172, covering A372171.
For all cycles (not just triangles) we have A372176, covering A372175.
A001858 counts acyclic graphs, unlabeled A005195.
A367867 counts non-choosable graphs, covering A367868.
A372193 counts unicyclic graphs, unlabeled A236570, covering A372191.
Sequence in context: A125699 A372176 A372153 * A369371 A242207 A060465
KEYWORD
nonn,tabf,changed
AUTHOR
Gus Wiseman, Apr 23 2024
EXTENSIONS
a(42) onwards from Andrew Howroyd, Dec 29 2024
STATUS
approved