login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A141812
RMS values of the RMS numbers: a(n) is the root mean square of the divisors of A140480(n).
7
1, 5, 29, 169, 145, 845, 1105, 2405, 3445, 4901, 2665, 5525, 9425, 12325, 12025, 17225, 24505, 13325, 32045, 55205, 47125, 61625, 69745, 101065, 99905, 77285, 124501, 160225, 186745, 204425, 239425, 160225, 273325, 276025, 292825, 226525, 446165, 456025
OFFSET
1,2
COMMENTS
Those numbers seem to be congruent to 0,1,-1 mod 5. - Ctibor O. Zizka, Sep 23 2008
No, the first terms congruent to 2 and 3 mod 5 are a(461) = 247511537 and a(1603) = 7177834573, respectively. - Giovanni Resta, Oct 29 2019
LINKS
Giovanni Resta, Table of n, a(n) for n = 1..7430 (terms 1..455 from Andrew Weimholt, terms 456..1660 from Donovan Johnson)
EXAMPLE
a(5)=145, because A140480(5)=287, with divisors 1,7,41,287 and RMS(1,7,41,287) = 145.
MATHEMATICA
rmsQ[n_] := IntegerQ[Sqrt[DivisorSigma[2, n]/DivisorSigma[0, n]]]; Reap[ For[k=1; n=1, k<10^7, k++, If[rmsQ[k], an = Sqrt[Mean[Divisors[k]^2]]; Print["k = ", k, " a(", n++, ") = ", an]; Sow[an]]]][[2, 1]] (* Jean-François Alcover, Dec 04 2015 *)
PROG
(PARI) for(n=1, 1e6, if(issquare(sumdiv(n, d, d^2)/numdiv(n), &s) && denominator(s)==1, print1(s", "))) \\ Charles R Greathouse IV, Mar 08 2013
CROSSREFS
KEYWORD
nonn
AUTHOR
Andrew Weimholt, Jul 07 2008
STATUS
approved