login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A210637
Triangle T(n,k), read by rows, given by (2, 1/2, -1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (2, -1/2, -1/2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.
1
1, 2, 2, 5, 8, 3, 12, 27, 20, 5, 29, 84, 91, 44, 8, 70, 248, 352, 251, 90, 13, 169, 708, 1240, 1164, 618, 176, 21, 408, 1973, 4106, 4771, 3344, 1414, 334, 34, 985, 5400, 13010, 18000, 15645, 8748, 3073, 620, 55
OFFSET
0,2
COMMENTS
Row sums are powers of 4 (A000302).
FORMULA
G.f.: (1+y*x)/(1-(y+2)*x-(y+1)^2*x^2).
T(n,k) = 2*T(n-1,k) + T(n-1,k-1) + T(n-2,k) + 2*T(n-2,k-1) + T(n-2,k-2), T(0,0) = 1, T(1,0) = T(1,1) = 2 and T(n,k) = 0 if k<0 or if k>n.
Sum_{k, 0<=k<=n} T(n,k)*x^k = (-1)^n*A159612(n+1), (-1)^n*A000034(n), A000007(n), A000129(n+1), A000302(n) for x = -3, -2, -1, 0, 1 respectively.
T(n,0) = A000129(n+1), T(n,n) = A000045(n+2), T(n+1,n) = 2*A004798(n+1).
EXAMPLE
Triangle begins :
1
2, 2
5, 8, 3
12, 27, 20, 5
29, 84, 91, 44, 8
70, 248, 352, 251, 90, 13
169, 708, 1240, 1164, 618, 176, 21
408, 1973, 4106, 4771, 3344, 1414, 334, 34
985, 5400, 13010, 18000, 15645, 8748, 3073, 620, 55
2378, 14574, 39880, 63966, 66282, 46014, 21400, 6429, 1132, 89
5741, 38896, 119129, 217232, 261185, 216348, 125028, 49772, 13061, 2040, 144
CROSSREFS
Cf. A000045, A000129, A000302, A261056 (2nd column).
Sequence in context: A193891 A193906 A224791 * A201972 A202396 A210804
KEYWORD
easy,nonn,tabl
AUTHOR
Philippe Deléham, Mar 26 2012
STATUS
approved