login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A201972
Triangle T(n,k), read by rows, given by (2,1/2,-1/2,0,0,0,0,0,0,0,...) DELTA (2,-1/2,1/2,0,0,0,0,0,0,0,...) where DELTA is the operator defined in A084938.
1
1, 2, 2, 5, 8, 3, 12, 28, 20, 4, 29, 88, 94, 40, 5, 70, 262, 372, 244, 70, 6, 169, 752, 1333, 1184, 539, 112, 7, 408, 2104, 4472, 5016, 3144, 1064, 168, 8, 985, 5776, 14316, 19408, 15526, 7344, 1932, 240, 9
OFFSET
0,2
COMMENTS
Diagonal sums: A201967(n), row sums: A000302(n) (powers of 4).
FORMULA
G.f.: 1/(1-2*(y+1)*x+(y+1)*(y-1)*x^2).
Sum_{k=0..n} T(n,k)*x^k = A000007(n), A000129(n+1), A000302(n), A138395(n), A057084(n) for x = -1, 0, 1, 2, 3, respectively.
Sum_{k=0..n} T(n,k)*x^(n-k) = A000027(n), A000302(n), A090018(n), A057091(n) for x = 0, 1, 2, 3, respectively.
T(n,k) = 2*T(n-1,k) + 2*T(n-1,k-1) + T(n-2,k) - T(n-2,k-2) with T(0,0) = 1, T(n,k) = 0 if k < 0 or if n < k.
EXAMPLE
Triangle begins:
1;
2, 2;
5, 8, 3;
12, 28, 20, 4;
29, 88, 94, 40, 5;
70, 262, 372, 244, 70, 6;
169, 752, 1333, 1184, 539, 112, 7;
MAPLE
T:= proc(n, k) option remember;
if k=0 and n=0 then 1
elif k<0 or k>n then 0
else 2*T(n-1, k) + 2*T(n-1, k-1) + T(n-2, k) - T(n-2, k-2)
fi; end:
seq(seq(T(n, k), k=0..n), n=0..10); # G. C. Greubel, Feb 17 2020
MATHEMATICA
With[{m = 8}, CoefficientList[CoefficientList[Series[1/(1-2*(y+1)*x+(y+1)*(y-1)*x^2), {x, 0 , m}, {y, 0, m}], x], y]] // Flatten (* Georg Fischer, Feb 17 2020 *)
PROG
(PARI) T(n, k) = if(n<k, 0, if(k<0, 0, if((n==0)&&(k==0), 1, 2*T(n-1, k)+2*T(n-1, k-1)+T(n-2, k)-T(n-2, k-2))));
matrix(10, 10, n, k, T(n-1, k-1)) \\ to see the triangle \\ Michel Marcus, Feb 17 2020
(Sage)
@CachedFunction
def T(n, k):
if (k<0 or k>n): return 0
elif (k==0 and n==0): return 1
else: return 2*T(n-1, k) + 2*T(n-1, k-1) + T(n-2, k) - T(n-2, k-2)
[[T(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Feb 17 2020
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Philippe Deléham, Dec 07 2011
EXTENSIONS
a(40) corrected by Georg Fischer, Feb 17 2020
STATUS
approved