login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A201970
G.f. satisfies: A(x) = 1 + x*A(x)^2 + x^2/A(x)^3.
1
1, 1, 3, 4, 11, 53, 146, 366, 1563, 5837, 16720, 59917, 246090, 828157, 2773984, 11056545, 41539923, 142602611, 536781500, 2103092222, 7632057148, 27948758125, 108960963441, 413531196001, 1523673835870, 5833675306068, 22596747340839, 85028853983908, 322415760345476
OFFSET
0,3
COMMENTS
This sequence consists entirely of positive integers, but negative coefficients appear in G(x) where G(x) = 1 + x*G(x)^2 + x^2/G(x)^4.
LINKS
Vaclav Kotesovec, Recurrence (of order 8)
FORMULA
G.f. satisfies: x^2 = A(x)^4 - A(x)^3 - x*A(x)^5.
a(n) ~ s*sqrt((2*r + s^5) / (Pi*(6*r + s^5))) / (2*n^(3/2)*r^n), where r = 0.2481615785281025222129020972009425192154180157568... and s = 2.036459583599244077761952153978454195241402482624... are roots of the system of equations 1 + r^2/s^3 + r*s^2 = s, 2*r*s = 1 + 3*r^2/s^4. - Vaclav Kotesovec, Nov 18 2017
EXAMPLE
G.f.: A(x) = 1 + x + 3*x^2 + 4*x^3 + 11*x^4 + 53*x^5 + 146*x^6 +...
Related expansions begin:
A(x)^2 = 1 + 2*x + 7*x^2 + 14*x^3 + 39*x^4 + 152*x^5 + 480*x^6 +...
1/A(x)^3 = 1 - 3*x - 3*x^2 + 14*x^3 - 6*x^4 - 114*x^5 + 133*x^6 +...
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=1+x*A^2+x^2/(A+x*O(x^n))^3); polcoeff(A, n)}
CROSSREFS
Sequence in context: A101982 A041947 A327081 * A102013 A192223 A079940
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 07 2011
STATUS
approved