Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #9 Nov 18 2017 09:45:31
%S 1,1,3,4,11,53,146,366,1563,5837,16720,59917,246090,828157,2773984,
%T 11056545,41539923,142602611,536781500,2103092222,7632057148,
%U 27948758125,108960963441,413531196001,1523673835870,5833675306068,22596747340839,85028853983908,322415760345476
%N G.f. satisfies: A(x) = 1 + x*A(x)^2 + x^2/A(x)^3.
%C This sequence consists entirely of positive integers, but negative coefficients appear in G(x) where G(x) = 1 + x*G(x)^2 + x^2/G(x)^4.
%H Vaclav Kotesovec, <a href="/A201970/b201970.txt">Table of n, a(n) for n = 0..400</a>
%H Vaclav Kotesovec, <a href="/A201970/a201970.txt">Recurrence (of order 8)</a>
%F G.f. satisfies: x^2 = A(x)^4 - A(x)^3 - x*A(x)^5.
%F a(n) ~ s*sqrt((2*r + s^5) / (Pi*(6*r + s^5))) / (2*n^(3/2)*r^n), where r = 0.2481615785281025222129020972009425192154180157568... and s = 2.036459583599244077761952153978454195241402482624... are roots of the system of equations 1 + r^2/s^3 + r*s^2 = s, 2*r*s = 1 + 3*r^2/s^4. - _Vaclav Kotesovec_, Nov 18 2017
%e G.f.: A(x) = 1 + x + 3*x^2 + 4*x^3 + 11*x^4 + 53*x^5 + 146*x^6 +...
%e Related expansions begin:
%e A(x)^2 = 1 + 2*x + 7*x^2 + 14*x^3 + 39*x^4 + 152*x^5 + 480*x^6 +...
%e 1/A(x)^3 = 1 - 3*x - 3*x^2 + 14*x^3 - 6*x^4 - 114*x^5 + 133*x^6 +...
%o (PARI) {a(n)=local(A=1+x);for(i=1,n,A=1+x*A^2+x^2/(A+x*O(x^n))^3);polcoeff(A,n)}
%K nonn
%O 0,3
%A _Paul D. Hanna_, Dec 07 2011