login
A119915
Number of ternary words of length n and having exactly one run of 0's of odd length.
3
0, 1, 4, 13, 40, 117, 332, 921, 2512, 6761, 18004, 47525, 124536, 324317, 840092, 2166065, 5562272, 14232273, 36300196, 92321085, 234192584, 592695109, 1496810732, 3772761289, 9492450672, 23844342073, 59804611060, 149787196117
OFFSET
0,3
COMMENTS
Column 1 of A119914.
FORMULA
a(n) = [z^n] z*(1 - z^2)/(1 - 2*z - z^2)^2.
a(n) = A006645(n+1) - A006645(n-1). - R. J. Mathar, Aug 07 2015
From Peter Luschny, Jan 14 2020: (Start)
a(n) = Sum_{k=0..n} A193737(n, k)*k.
Let h(k) = (1 + k)*exp((1 + k)*x)*(1 + x - 1/k)/4 then
a(n) = n!*[x^n](h(sqrt(2)) + h(-sqrt(2))). (End)
EXAMPLE
a(3) = 13 because we have 000, 011, 012, 021, 022, 101, 102, 110, 120, 201, 202, 210 and 220 (for example, 001, 020 do not qualify).
MAPLE
g := z*(1-z^2)/(1-2*z-z^2)^2:
gser := series(g, z=0, 34):
seq(coeff(gser, z, n), n=0..30);
MATHEMATICA
LinearRecurrence[ {4, -2, -4, -1}, {0, 1, 4, 13}, 28] (* Peter Luschny, Jan 14 2020 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, May 29 2006
STATUS
approved