OFFSET
0,3
COMMENTS
Column 1 of A119914.
LINKS
Index entries for linear recurrences with constant coefficients, signature (4,-2,-4,-1).
FORMULA
a(n) = [z^n] z*(1 - z^2)/(1 - 2*z - z^2)^2.
From Peter Luschny, Jan 14 2020: (Start)
a(n) = Sum_{k=0..n} A193737(n, k)*k.
Let h(k) = (1 + k)*exp((1 + k)*x)*(1 + x - 1/k)/4 then
a(n) = n!*[x^n](h(sqrt(2)) + h(-sqrt(2))). (End)
EXAMPLE
a(3) = 13 because we have 000, 011, 012, 021, 022, 101, 102, 110, 120, 201, 202, 210 and 220 (for example, 001, 020 do not qualify).
MAPLE
g := z*(1-z^2)/(1-2*z-z^2)^2:
gser := series(g, z=0, 34):
seq(coeff(gser, z, n), n=0..30);
MATHEMATICA
LinearRecurrence[ {4, -2, -4, -1}, {0, 1, 4, 13}, 28] (* Peter Luschny, Jan 14 2020 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, May 29 2006
STATUS
approved