login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A119915
Number of ternary words of length n and having exactly one run of 0's of odd length.
3
0, 1, 4, 13, 40, 117, 332, 921, 2512, 6761, 18004, 47525, 124536, 324317, 840092, 2166065, 5562272, 14232273, 36300196, 92321085, 234192584, 592695109, 1496810732, 3772761289, 9492450672, 23844342073, 59804611060, 149787196117
OFFSET
0,3
COMMENTS
Column 1 of A119914.
FORMULA
a(n) = [z^n] z*(1 - z^2)/(1 - 2*z - z^2)^2.
a(n) = A006645(n+1) - A006645(n-1). - R. J. Mathar, Aug 07 2015
From Peter Luschny, Jan 14 2020: (Start)
a(n) = Sum_{k=0..n} A193737(n, k)*k.
Let h(k) = (1 + k)*exp((1 + k)*x)*(1 + x - 1/k)/4 then
a(n) = n!*[x^n](h(sqrt(2)) + h(-sqrt(2))). (End)
EXAMPLE
a(3) = 13 because we have 000, 011, 012, 021, 022, 101, 102, 110, 120, 201, 202, 210 and 220 (for example, 001, 020 do not qualify).
MAPLE
g := z*(1-z^2)/(1-2*z-z^2)^2:
gser := series(g, z=0, 34):
seq(coeff(gser, z, n), n=0..30);
MATHEMATICA
LinearRecurrence[ {4, -2, -4, -1}, {0, 1, 4, 13}, 28] (* Peter Luschny, Jan 14 2020 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, May 29 2006
STATUS
approved