login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A193737
Mirror of the triangle A193736.
7
1, 1, 1, 1, 2, 1, 2, 4, 3, 1, 3, 8, 8, 4, 1, 5, 15, 19, 13, 5, 1, 8, 28, 42, 36, 19, 6, 1, 13, 51, 89, 91, 60, 26, 7, 1, 21, 92, 182, 216, 170, 92, 34, 8, 1, 34, 164, 363, 489, 446, 288, 133, 43, 9, 1, 55, 290, 709, 1068, 1105, 826, 455, 184, 53, 10, 1, 89, 509, 1362, 2266, 2619, 2219, 1414, 682, 246, 64, 11, 1
OFFSET
0,5
COMMENTS
This triangle is obtained by reversing the rows of the triangle A193736.
FORMULA
Write w(n,k) for the triangle at A193736. This is then given by w(n,n-k).
T(0,0) = T(1,0) = T(1,1) = T(2,0) = 1; T(n,k) = 0 if k<0 or k>n; T(n,k) = T(n-1,k) + T(n-1,k-1) + T(n-2,k). - Philippe Deléham, Feb 13 2020
From G. C. Greubel, Oct 24 2023: (Start)
T(n, 0) = Fibonacci(n) + [n=0] = A324969(n+1).
T(n, n-1) = n, for n >= 1.
T(n, n-2) = A034856(n-1), for n >= 2.
T(2*n, n) = A330793(n).
Sum_{k=0..n} T(n,k) = A052542(n).
Sum_{k=0..n} (-1)^k * T(n,k) = A000007(n).
Sum_{k=0..floor(n/2)} T(n-k, k) = A011782(n).
Sum_{k=0..floor(n/2)} (-1)^k * T(n-k,k) = A019590(n). (End)
EXAMPLE
First six rows:
1;
1, 1;
1, 2, 1;
2, 4, 3, 1;
3, 8, 8, 4, 1;
5, 15, 19, 13, 5, 1;
MATHEMATICA
(* First program *)
z=20;
p[0, x_]:= 1;
p[n_, x_]:= Fibonacci[n+1, x] /; n > 0
q[n_, x_]:= (x + 1)^n;
t[n_, k_]:= Coefficient[p[n, x], x^(n-k)];
t[n_, n_]:= p[n, x] /. x -> 0;
w[n_, x_]:= Sum[t[n, k]*q[n-k+1, x], {k, 0, n}]; w[-1, x_] := 1;
g[n_]:= CoefficientList[w[n, x], {x}]
TableForm[Table[Reverse[g[n]], {n, -1, z}]]
Flatten[Table[Reverse[g[n]], {n, -1, z}]] (* A193736 *)
TableForm[Table[g[n], {n, -1, z}]]
Flatten[Table[g[n], {n, -1, z}]] (* A193737 *)
(* Additional programs *)
(* Function RiordanSquare defined in A321620. *)
RiordanSquare[1 + 1/(1 - x - x^2), 11]//Flatten (* Peter Luschny, Feb 27 2021 *)
T[n_, k_]:= T[n, k]= If[n<3, Binomial[n, k], T[n-1, k] + T[n-1, k-1] + T[n-2, k]];
Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Oct 24 2023 *)
PROG
(Magma)
function T(n, k) // T = A193737
if k lt 0 or n lt 0 then return 0;
elif n lt 3 then return Binomial(n, k);
else return T(n - 1, k) + T(n - 1, k - 1) + T(n - 2, k);
end if;
end function;
[T(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 24 2023
(SageMath)
def T(n, k): # T = A193737
if (n<3): return binomial(n, k)
else: return T(n-1, k) +T(n-1, k-1) +T(n-2, k)
flatten([[T(n, k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Oct 24 2023
CROSSREFS
Cf. A000007, A011782 (diagonal sums), A019590, A052542 (row sums).
Sequence in context: A337712 A256184 A120855 * A160001 A339549 A179750
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Aug 04 2011
STATUS
approved