login
A193737
Mirror of the triangle A193736.
7
1, 1, 1, 1, 2, 1, 2, 4, 3, 1, 3, 8, 8, 4, 1, 5, 15, 19, 13, 5, 1, 8, 28, 42, 36, 19, 6, 1, 13, 51, 89, 91, 60, 26, 7, 1, 21, 92, 182, 216, 170, 92, 34, 8, 1, 34, 164, 363, 489, 446, 288, 133, 43, 9, 1, 55, 290, 709, 1068, 1105, 826, 455, 184, 53, 10, 1, 89, 509, 1362, 2266, 2619, 2219, 1414, 682, 246, 64, 11, 1
OFFSET
0,5
COMMENTS
This triangle is obtained by reversing the rows of the triangle A193736.
FORMULA
Write w(n,k) for the triangle at A193736. This is then given by w(n,n-k).
T(0,0) = T(1,0) = T(1,1) = T(2,0) = 1; T(n,k) = 0 if k<0 or k>n; T(n,k) = T(n-1,k) + T(n-1,k-1) + T(n-2,k). - Philippe Deléham, Feb 13 2020
From G. C. Greubel, Oct 24 2023: (Start)
T(n, 0) = Fibonacci(n) + [n=0] = A324969(n+1).
T(n, n-1) = n, for n >= 1.
T(n, n-2) = A034856(n-1), for n >= 2.
T(2*n, n) = A330793(n).
Sum_{k=0..n} T(n,k) = A052542(n).
Sum_{k=0..n} (-1)^k * T(n,k) = A000007(n).
Sum_{k=0..floor(n/2)} T(n-k, k) = A011782(n).
Sum_{k=0..floor(n/2)} (-1)^k * T(n-k,k) = A019590(n). (End)
EXAMPLE
First six rows:
1;
1, 1;
1, 2, 1;
2, 4, 3, 1;
3, 8, 8, 4, 1;
5, 15, 19, 13, 5, 1;
MATHEMATICA
(* First program *)
z=20;
p[0, x_]:= 1;
p[n_, x_]:= Fibonacci[n+1, x] /; n > 0
q[n_, x_]:= (x + 1)^n;
t[n_, k_]:= Coefficient[p[n, x], x^(n-k)];
t[n_, n_]:= p[n, x] /. x -> 0;
w[n_, x_]:= Sum[t[n, k]*q[n-k+1, x], {k, 0, n}]; w[-1, x_] := 1;
g[n_]:= CoefficientList[w[n, x], {x}]
TableForm[Table[Reverse[g[n]], {n, -1, z}]]
Flatten[Table[Reverse[g[n]], {n, -1, z}]] (* A193736 *)
TableForm[Table[g[n], {n, -1, z}]]
Flatten[Table[g[n], {n, -1, z}]] (* A193737 *)
(* Additional programs *)
(* Function RiordanSquare defined in A321620. *)
RiordanSquare[1 + 1/(1 - x - x^2), 11]//Flatten (* Peter Luschny, Feb 27 2021 *)
T[n_, k_]:= T[n, k]= If[n<3, Binomial[n, k], T[n-1, k] + T[n-1, k-1] + T[n-2, k]];
Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Oct 24 2023 *)
PROG
(Magma)
function T(n, k) // T = A193737
if k lt 0 or n lt 0 then return 0;
elif n lt 3 then return Binomial(n, k);
else return T(n - 1, k) + T(n - 1, k - 1) + T(n - 2, k);
end if;
end function;
[T(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 24 2023
(SageMath)
def T(n, k): # T = A193737
if (n<3): return binomial(n, k)
else: return T(n-1, k) +T(n-1, k-1) +T(n-2, k)
flatten([[T(n, k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Oct 24 2023
CROSSREFS
Cf. A000007, A011782 (diagonal sums), A019590, A052542 (row sums).
Sequence in context: A337712 A256184 A120855 * A160001 A339549 A179750
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Aug 04 2011
STATUS
approved