login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A330793
a(n) = A193737(2*n, n).
2
1, 2, 8, 36, 170, 826, 4088, 20496, 103752, 529100, 2714140, 13989560, 72393412, 375877684, 1957199120, 10216355632, 53443289946, 280101010170, 1470508417340, 7731675774900, 40706787482130, 214580612067690, 1132389348358320, 5981916549623040, 31629125981208600
OFFSET
0,2
LINKS
FORMULA
D-finite with recurrence a(n) = ( 2*(11*n-3)*(n-1)*a(n-1) + 3*(3*n - 4)*(3*n-5)*a(n-2) )/(5*n*(n-1)).
a(n) = [x^n] (16 + 8*hypergeometric2F1([2/3, 1/3], [1/2], (1+x)*27/32) + sqrt(18*(1+x))* hypergeometric2F1([7/6, 5/6], [3/2], (1+x)*27/32))/48.
a(n) = [x^n] (1/(3*sqrt(5 - 27*x)))*(sqrt(5 - 27*x) + 2*sqrt(2)*cos((1/6)*arccos(1 - (27*(1 + x))/16)) + 2*sqrt(6)*sin((1/3)*arcsin((3/4)*sqrt(3/2)*sqrt(1 + x)))).
a(n) ~ 2^(3/2) * 3^(3*n - 1/2) / (sqrt(Pi*n) * 5^(n + 1/2)). - Vaclav Kotesovec, Oct 24 2023
MAPLE
a := proc(n) option remember;
if n < 3 then return [1, 2, 8][n+1] fi;
((60-81*n+27*n^2)*a(n-2) + (22*n^2-28*n+6)*a(n-1))/(5*n*(n-1)) end:
seq(a(n), n=0..24);
# Alternative:
gf := x -> (16 + 8*hypergeom([2/3, 1/3], [1/2], (1+x)*27/32) +
sqrt(18*(1+x))*hypergeom([7/6, 5/6], [3/2], (1+x)*27/32))/48:
ser := series(gf(x), x, 32): evalf(%, 32):
seq(round(coeff(%, x, n)), n=0..24);
# Or:
Gf := x -> (1/(3*sqrt(5 - 27*x)))*(sqrt(5 - 27*x) +
2*sqrt(2)*cos((1/6)*arccos(1 - (27*(1 + x))/16)) +
2*sqrt(6)*sin((1/3)*arcsin((3/4)*sqrt(3/2)*sqrt(1 + x)))):
ser := series(Gf(x), x, 32): evalf(%, 32):
seq(round(coeff(%, x, n)), n=0..24);
MATHEMATICA
a[n_]:= a[n]= If[n<3, 2^n*n!, (2*(n-1)*(11*n-3)*a[n-1] +3*(3*n-4)*(3*n -5)*a[n-2])/(5*n*(n-1))]; (* a=A330793 *)
Table[a[n], {n, 0, 40}] (* G. C. Greubel, Oct 24 2023 *)
PROG
(Magma) [1] cat [n le 2 select 2*(3*n-2) else ( 2*(11*n-3)*(n-1)*Self(n-1) + 3*(3*n-4)*(3*n-5)*Self(n-2) )/(5*n*(n-1)): n in [1..30]]; // G. C. Greubel, Oct 24 2023
(SageMath)
@CachedFunction
def a(n): # a = A330793
if n<3: return (1, 2, 8)[n]
else: return (2*(n-1)*(11*n-3)*a(n-1) + 3*(3*n-4)*(3*n-5)*a(n-2))/(5*n*(n-1))
[a(n) for n in range(41)] # G. C. Greubel, Oct 24 2023
CROSSREFS
Cf. A193737.
Sequence in context: A275752 A084868 A350645 * A352862 A109980 A186338
KEYWORD
nonn
AUTHOR
Peter Luschny, Jan 10 2020
STATUS
approved