login
A350645
Number of permutations avoiding 132 of length 3n composed of only 3-cycles.
1
1, 2, 8, 36, 170, 824, 4060, 20232, 101664, 514140, 2613468, 13340496, 68335644, 351087128, 1808405600, 9335697424, 48289295226, 250213951992, 1298517484804, 6748250144600, 35114221973600, 182924946400680, 953931045159000, 4979398271047200, 26014703727203100
OFFSET
0,2
COMMENTS
Also the number of permutations avoiding 213 of length 3n composed of only 3-cycles.
LINKS
Kassie Archer and Christina Graves, Pattern-restricted permutations composed of 3-cycles, arXiv:2104.12664 [math.CO], 2021.
FORMULA
G.f.: c(x*c(x))/(2-c(x*c(x))) where c(x) is the generating function for Catalan numbers. Notice c(x*c(x)) is given in A127632.
G.f.: (1+A(x))/(1-A(x)) where A(x) = (c(x)-1)*c(m(x)-1) where c(x) is the generating function for Catalan numbers and m(x) is the generating function for the Motzkin numbers.
EXAMPLE
For n=2, the eight permutations (in one-line notation and cycle notation) are:
[6, 5, 2, 1, 3, 4] (1,6,4)(2,5,3)
[6, 4, 2, 3, 1, 5] (1,6,5)(2,4,3)
[6, 3, 4, 2, 1, 5] (1,6,5)(2,3,4)
[5, 6, 1, 2, 3, 4] (1,5,3)(2,6,4)
[3, 4, 5, 6, 1, 2] (1,3,5)(2,4,6)
[4, 3, 5, 6, 2, 1] (1,4,6)(2,3,5)
[5, 3, 4, 2, 6, 1] (1,5,6)(2,3,4)
[5, 4, 2, 3, 6, 1] (1,5,6)(2,4,3) .
CROSSREFS
KEYWORD
nonn
AUTHOR
Kassie Archer, Jan 09 2022
STATUS
approved