login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A206902
Number of nonisomorphic graded posets with 0 and uniform Hasse diagram of rank n with no 3-element antichain.
5
1, 2, 8, 36, 166, 768, 3554, 16446, 76102, 352152, 1629536, 7540458, 34892452, 161460114, 747134894, 3457265922, 15998031616, 74028732924, 342557973998, 1585140808368, 7335025230994, 33941839649382, 157061283704438, 726779900373936, 3363075935260696
OFFSET
0,2
COMMENTS
We do not assume all maximal elements have maximal rank and thus use graded poset to mean: For every element x, all maximal chains among those with x as greatest element have the same finite length.
Uniform (in the definition) used in the sense of Retakh, Serconek and Wilson (see paper in Links lines). - David Nacin, Mar 01 2012
LINKS
V. Retakh, S. Serconek and R. Wilson, Hilbert Series of Algebras Associated to Directed Graphs and Order Homology, arXiv:1010.6295 [math.RA], 2010-2011.
Wikipedia, Graded poset
FORMULA
a(n) = 6*a(n-1) - 7*a(n-2) + 3*a(n-3), a(1)=2, a(2)=8, a(3)=36.
G.f.: (1 -4*x +3*x^2 -x^3)/(1 -6*x +7*x^2 -3*x^3).
MATHEMATICA
LinearRecurrence[{6, -7, 3}, {1, 2, 8, 36}, 30] (* Vincenzo Librandi, Feb 27 2012 *)
PROG
(Python)
def a(n, adict={1:2, 2:8, 3:36}):
if n in adict:
return adict[n]
adict[n]=6*a(n-1)-7*a(n-2)+3*a(n-3)
return adict[n]
(PARI) my(x='x+O('x^30)); Vec((1-4*x+3*x^2-x^3)/(1-6*x+7*x^2-3*x^3)) \\ G. C. Greubel, May 21 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1-4*x +3*x^2-x^3)/(1-6*x+7*x^2-3*x^3) )); // G. C. Greubel, May 21 2019
(Sage) ((1-4*x+3*x^2-x^3)/(1-6*x+7*x^2-3*x^3)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 21 2019
(GAP) a:=[2, 8, 36];; for n in [4..30] do a[n]:=6*a[n-1]-7*a[n-2]+3*a[n-3]; od; Concatenation([1], a); # G. C. Greubel, May 21 2019
CROSSREFS
Cf. A025192 (adding a unique maximal element).
Cf. A124292, A206901 (dropping uniformity with and without maximal element).
Sequence in context: A152124 A147722 A089387 * A275752 A084868 A350645
KEYWORD
nonn,easy
AUTHOR
David Nacin, Feb 13 2012
STATUS
approved