OFFSET
0,2
COMMENTS
We do not assume all maximal elements have maximal rank and thus use graded poset to mean: For every element x, all maximal chains among those with x as greatest element have the same finite length.
Uniform (in the definition) used in the sense of Retakh, Serconek and Wilson (see paper in Links lines). - David Nacin, Mar 01 2012
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
V. Retakh, S. Serconek and R. Wilson, Hilbert Series of Algebras Associated to Directed Graphs and Order Homology, arXiv:1010.6295 [math.RA], 2010-2011.
Wikipedia, Graded poset
Index entries for linear recurrences with constant coefficients, signature (6,-7,3).
FORMULA
a(n) = 6*a(n-1) - 7*a(n-2) + 3*a(n-3), a(1)=2, a(2)=8, a(3)=36.
G.f.: (1 -4*x +3*x^2 -x^3)/(1 -6*x +7*x^2 -3*x^3).
MATHEMATICA
LinearRecurrence[{6, -7, 3}, {1, 2, 8, 36}, 30] (* Vincenzo Librandi, Feb 27 2012 *)
PROG
(Python)
def a(n, adict={1:2, 2:8, 3:36}):
if n in adict:
return adict[n]
adict[n]=6*a(n-1)-7*a(n-2)+3*a(n-3)
return adict[n]
(PARI) my(x='x+O('x^30)); Vec((1-4*x+3*x^2-x^3)/(1-6*x+7*x^2-3*x^3)) \\ G. C. Greubel, May 21 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1-4*x +3*x^2-x^3)/(1-6*x+7*x^2-3*x^3) )); // G. C. Greubel, May 21 2019
(Sage) ((1-4*x+3*x^2-x^3)/(1-6*x+7*x^2-3*x^3)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 21 2019
(GAP) a:=[2, 8, 36];; for n in [4..30] do a[n]:=6*a[n-1]-7*a[n-2]+3*a[n-3]; od; Concatenation([1], a); # G. C. Greubel, May 21 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
David Nacin, Feb 13 2012
STATUS
approved