login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of nonisomorphic graded posets with 0 and uniform Hasse diagram of rank n with no 3-element antichain.
5

%I #41 Sep 08 2022 08:46:01

%S 1,2,8,36,166,768,3554,16446,76102,352152,1629536,7540458,34892452,

%T 161460114,747134894,3457265922,15998031616,74028732924,342557973998,

%U 1585140808368,7335025230994,33941839649382,157061283704438,726779900373936,3363075935260696

%N Number of nonisomorphic graded posets with 0 and uniform Hasse diagram of rank n with no 3-element antichain.

%C We do not assume all maximal elements have maximal rank and thus use graded poset to mean: For every element x, all maximal chains among those with x as greatest element have the same finite length.

%C Uniform (in the definition) used in the sense of Retakh, Serconek and Wilson (see paper in Links lines). - _David Nacin_, Mar 01 2012

%H Vincenzo Librandi, <a href="/A206902/b206902.txt">Table of n, a(n) for n = 0..1000</a>

%H V. Retakh, S. Serconek and R. Wilson, <a href="http://arxiv.org/abs/1010.6295">Hilbert Series of Algebras Associated to Directed Graphs and Order Homology</a>, arXiv:1010.6295 [math.RA], 2010-2011.

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Graded_poset">Graded poset</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (6,-7,3).

%F a(n) = 6*a(n-1) - 7*a(n-2) + 3*a(n-3), a(1)=2, a(2)=8, a(3)=36.

%F G.f.: (1 -4*x +3*x^2 -x^3)/(1 -6*x +7*x^2 -3*x^3).

%t LinearRecurrence[{6,-7,3}, {1,2,8,36}, 30] (* _Vincenzo Librandi_, Feb 27 2012 *)

%o (Python)

%o def a(n, adict={1:2,2:8,3:36}):

%o if n in adict:

%o return adict[n]

%o adict[n]=6*a(n-1)-7*a(n-2)+3*a(n-3)

%o return adict[n]

%o (PARI) my(x='x+O('x^30)); Vec((1-4*x+3*x^2-x^3)/(1-6*x+7*x^2-3*x^3)) \\ _G. C. Greubel_, May 21 2019

%o (Magma) R<x>:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1-4*x +3*x^2-x^3)/(1-6*x+7*x^2-3*x^3) )); // _G. C. Greubel_, May 21 2019

%o (Sage) ((1-4*x+3*x^2-x^3)/(1-6*x+7*x^2-3*x^3)).series(x, 30).coefficients(x, sparse=False) # _G. C. Greubel_, May 21 2019

%o (GAP) a:=[2,8,36];; for n in [4..30] do a[n]:=6*a[n-1]-7*a[n-2]+3*a[n-3]; od; Concatenation([1], a); # _G. C. Greubel_, May 21 2019

%Y Cf. A025192 (adding a unique maximal element).

%Y Cf. A124292, A206901 (dropping uniformity with and without maximal element).

%K nonn,easy

%O 0,2

%A _David Nacin_, Feb 13 2012