login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A124292
Number of free generators of degree n of symmetric polynomials in 4 noncommuting variables.
11
1, 1, 2, 6, 21, 78, 297, 1143, 4419, 17118, 66366, 257391, 998406, 3873015, 15024609, 58285737, 226111986, 877174110, 3402893997, 13201132950, 51212274057, 198672129783, 770725711035, 2989941920334, 11599136512038, 44997518922327, 174562710686622
OFFSET
1,3
COMMENTS
Also the number of non-splitable set partitions (see Bergeron et al. reference) of length <= 4.
Also the number of nonisomorphic graded posets with 0 and 1 of rank n with no 3-element antichain. - Richard Stanley, Nov 30 2011
Also the number of nonisomorphic graded posets with 0 of rank n+1 with no 3-element antichain. (Using Stanley's definition of graded, that all maximal chains have length n.) - David Nacin, Feb 26 2012
REFERENCES
R. Stanley, Enumerative combinatorics. Vol. 1, Cambridge University Press, Cambridge, 1997, pages 96-100.
LINKS
N. Bergeron, C. Reutenauer, M. Rosas, and M. Zabrocki, Invariants and Coinvariants of the Symmetric Group in Noncommuting Variables, arXiv:math/0502082 [math.CO], 2005; MR2398749, Cand. J. Math 60 (2008) 266-296.
Yibo Gao and Kaarel Hänni, Boolean elements in the Bruhat order, arXiv:2007.08490 [math.CO], 2020.
M. C. Wolf, Symmetric functions of noncommutative elements, Duke Math. J. 2 (1936), 626-637.
FORMULA
O.g.f.: (1 - 5*q + 5*q^2)/(1 - 6*q + 9*q^2 - 3*q^3) = 1 - 1/(Sum_{k=0..4} q^k/(Product_{i=1..k} (1-i*q))).
a(n) = 6*a(n-1) - 9*a(n-2) + 3*a(n-3). - David Nacin, Feb 11 2012
a(n) = A055105(n,1) + A055105(n,2) + A055105(n,3) + A055105(n,4) = A055106(n,1) + A055106(n,2) + A055106(n,3).
Given matrix A = [[2,1,1],[1,3,0],[1,1,1]], a(n+1) = top left entry in A^n. - David Nacin, Feb 11 2012
a(n) = (1/3)*(x^(n-2) + y^(n-2) + z^(n-2)) for x = (2*cos(Pi/18))^2, y = (2*cos(5*Pi/18))^2, and z = (2*cos(7*Pi/18))^2. - Greg Dresden, Jan 28 2023
MAPLE
a:= n-> (Matrix([[2, 1, 1]]). Matrix(3, (i, j)-> if i=j-1 then 1 elif j=1 then [6, -9, 3][i] else 0 fi)^(n-1))[1, 3]: seq(a(n), n=1..26); # Alois P. Heinz, Sep 05 2008
MATHEMATICA
m = {{2, 1, 1}, {1, 3, 0}, {1, 1, 1}}; Table[MatrixPower[m, n][[1, 1]], {n, 0, 40}] (* David Nacin, Feb 11 2012 *)
LinearRecurrence[{6, -9, 3}, {1, 1, 2}, 70] (* Vladimir Joseph Stephan Orlovsky, Feb 26 2012 *)
PROG
(Python)
def a(n, adict={1:1, 2:1, 3:2}):
if n in adict:
return adict[n]
adict[n]=6*a(n-1)-9*a(n-2)+3*a(n-3)
return adict[n] # David Nacin, Mar 04 2012
KEYWORD
nonn
AUTHOR
Mike Zabrocki, Oct 24 2006
STATUS
approved