login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A350643
Expansion of Product_{k>=1} (1-q^(2*k))^2/(1-q^k)^7.
3
1, 7, 33, 126, 419, 1260, 3509, 9185, 22842, 54395, 124784, 277059, 597644, 1256341, 2580363, 5189185, 10236710, 19840410, 37832553, 71060190, 131610897, 240585292, 434431132, 775483785, 1369359198, 2393425484, 4143057525, 7106240582, 12083072562, 20375932566
OFFSET
0,2
LINKS
George E. Andrews and Peter Paule, MacMahon's partition analysis XIII: Schmidt type partitions and modular forms, Journal of Number Theory Available online 22 October 2021. See 7.4 p. 17.
MATHEMATICA
m = 50; CoefficientList[Series[Product[(1 - q^(2*k))^2/(1 - q^k)^7, {k, 1, m}], {q, 0, m}], q] (* Amiram Eldar, Jan 09 2022 *)
PROG
(PARI) lista(nn) = my(q='q+O('q^nn)); Vec(prod(k=1, nn, (1-q^(2*k))^2/(1-q^k)^7));
CROSSREFS
Sequence in context: A338232 A000605 A215054 * A114014 A375549 A229515
KEYWORD
nonn
AUTHOR
Michel Marcus, Jan 09 2022
STATUS
approved