login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A215054
a(n) = 1/11*(binomial(n,11) - floor(n/11)).
3
1, 7, 33, 124, 397, 1125, 2893, 6871, 15269, 32065, 64130, 122916, 226922, 405218, 702378, 1185263, 1952198, 3145208, 4966118, 7697483, 11729498, 17594247, 26008887, 37929627, 54618663, 77726559, 109392935, 152368731, 210163767, 287223815, 389141943
OFFSET
12,2
COMMENTS
Let p be a prime. Saikia and Vogrinc have proved that 1/p*{binomial(n,p) - floor(n/p)} is an integer sequence. The present sequence is the case p = 11. Other cases are A002620 (p = 2), A014125 (p = 3), A215052 (p = 5) and A215053 (p = 7).
LINKS
M. P. Saikia and J. Vogrinc, A simple number theoretic result arxiv.1207.6707v1 [mathNT]
Index entries for linear recurrences with constant coefficients, signature (11, -55, 165, -330, 462, -462, 330, -165, 55, -11, 2, -11, 55, -165, 330, -462, 462, -330, 165, -55, 11, -1).
FORMULA
a(n) = 1/11*(binomial(n,11) - floor(n/11)).
O.g.f.: sum_{n>=0} a(n)*x^n = x^12*(1 - 4*x + 11*x^2 - 19*x^3 + 23*x^4 - 19*x^5 + 11*x^6 - 4*x^7 + x^8)/((1-x^11)*(1-x)^11) = x^12*(1 + 7*x + 33*x^2 + 124*x^3 + ...). The numerator polynomial 1 - 4*x + 11*x^2 - 19*x^3 + 23*x^4 - 19*x^5 + 11*x^6 - 4*x^7 + x^8 is the negative of the row generating polynomial for row 11 of A178904.
MATHEMATICA
Table[(Binomial[n, 11]-Floor[n/11])/11, {n, 12, 50}] (* Harvey P. Dale, Aug 06 2012 *)
PROG
(Maxima) A215054(n):=1/11*(binomial(n, 11) - floor(n/11))$ makelist(A215054(n), n, 12, 30); /* Martin Ettl, Oct 25 2012 */
CROSSREFS
A002620 (p = 2), A014125 (p = 3), A178904, A215052 (p = 5), A215053(p = 7).
Partial sums of A032169.
Sequence in context: A221036 A338232 A000605 * A350643 A114014 A375549
KEYWORD
nonn,easy
AUTHOR
Peter Bala, Aug 01 2012
STATUS
approved