OFFSET
12,2
COMMENTS
LINKS
M. P. Saikia and J. Vogrinc, A simple number theoretic result arxiv.1207.6707v1 [mathNT]
Index entries for linear recurrences with constant coefficients, signature (11, -55, 165, -330, 462, -462, 330, -165, 55, -11, 2, -11, 55, -165, 330, -462, 462, -330, 165, -55, 11, -1).
FORMULA
a(n) = 1/11*(binomial(n,11) - floor(n/11)).
O.g.f.: sum_{n>=0} a(n)*x^n = x^12*(1 - 4*x + 11*x^2 - 19*x^3 + 23*x^4 - 19*x^5 + 11*x^6 - 4*x^7 + x^8)/((1-x^11)*(1-x)^11) = x^12*(1 + 7*x + 33*x^2 + 124*x^3 + ...). The numerator polynomial 1 - 4*x + 11*x^2 - 19*x^3 + 23*x^4 - 19*x^5 + 11*x^6 - 4*x^7 + x^8 is the negative of the row generating polynomial for row 11 of A178904.
MATHEMATICA
Table[(Binomial[n, 11]-Floor[n/11])/11, {n, 12, 50}] (* Harvey P. Dale, Aug 06 2012 *)
PROG
(Maxima) A215054(n):=1/11*(binomial(n, 11) - floor(n/11))$ makelist(A215054(n), n, 12, 30); /* Martin Ettl, Oct 25 2012 */
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Peter Bala, Aug 01 2012
STATUS
approved