login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A338232
Number of ternary strings of length n that contain at least two 0's and at most two 1's.
2
0, 0, 1, 7, 33, 121, 378, 1065, 2803, 7045, 17148, 40789, 95373, 220065, 502414, 1136977, 2553831, 5699149, 12645504, 27914877, 61337665, 134213065, 292547346, 635430937, 1375724763, 2969559381, 6392110468, 13723752805, 29393671413, 62813884465, 133949278998, 285078439329, 605590372303
OFFSET
0,4
FORMULA
a(n) = 2^n + n*2^(n-1) + binomial(n,2)*2^(n-2) - 3*binomial(n,2) - 3*binomial(n,3) - 2*n - 1.
E.g.f.: exp(x)*(exp(x) - 1 - x)*(2 + 2*x + x^2)/2.
G.f.: x^2*(1-3*x+5*x^2-11*x^3+11*x^4)/((1-x)^4*(1-2*x)^3). - Stefano Spezia, Jan 31 2021
EXAMPLE
a(4) = 33 since the strings are composed of 0000, the 4 permutations of 0001, the 4 permutations of 0002, the 6 permutations of 0011, the 6 permutations of 0022, and the 12 permutations of 0012. Thus, the total number of strings is 1 + 4 + 4 + 6 + 6 + 12 = 33.
MATHEMATICA
CoefficientList[Series[Exp[x](Exp[x]-1-x)(2+2x+x^2)/2, {x, 0, 32}], x]Table[i!, {i, 0, 32}] (* Stefano Spezia, Jan 31 2021 *)
CROSSREFS
Sequence in context: A375883 A256860 A221036 * A000605 A215054 A350643
KEYWORD
nonn,easy
AUTHOR
Enrique Navarrete, Jan 30 2021
STATUS
approved