OFFSET
0,4
LINKS
Index entries for linear recurrences with constant coefficients, signature (10,-42,96,-129,102,-44,8).
FORMULA
a(n) = 2^n + n*2^(n-1) + binomial(n,2)*2^(n-2) - 3*binomial(n,2) - 3*binomial(n,3) - 2*n - 1.
E.g.f.: exp(x)*(exp(x) - 1 - x)*(2 + 2*x + x^2)/2.
G.f.: x^2*(1-3*x+5*x^2-11*x^3+11*x^4)/((1-x)^4*(1-2*x)^3). - Stefano Spezia, Jan 31 2021
EXAMPLE
a(4) = 33 since the strings are composed of 0000, the 4 permutations of 0001, the 4 permutations of 0002, the 6 permutations of 0011, the 6 permutations of 0022, and the 12 permutations of 0012. Thus, the total number of strings is 1 + 4 + 4 + 6 + 6 + 12 = 33.
MATHEMATICA
CoefficientList[Series[Exp[x](Exp[x]-1-x)(2+2x+x^2)/2, {x, 0, 32}], x]Table[i!, {i, 0, 32}] (* Stefano Spezia, Jan 31 2021 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Enrique Navarrete, Jan 30 2021
STATUS
approved