login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A338229
Number of ternary strings of length n that contain at least one 0 and at most two 1's.
2
0, 1, 5, 19, 61, 176, 474, 1219, 3035, 7378, 17608, 41405, 96177, 221092, 503702, 1138567, 2555767, 5701478, 12648276, 27918145, 61341485, 134217496, 292552450, 635436779, 1375731411, 2969566906, 6392118944, 13723762309, 29393682025, 62813896268, 133949292078, 285078453775, 605590388207
OFFSET
0,3
FORMULA
a(n) = 2^n + n*2^(n-1) + binomial(n,2)*2^(n-2) - binomial(n,2) - n - 1.
E.g.f.: exp(x)*(exp(x) - 1)*(2 + 2*x + x^2)/2.
G.f.: x*(1 - 4*x + 7*x^2 - 8*x^3 + 5*x^4)/(1 - 3*x + 2*x^2)^3. - Stefano Spezia, Jan 31 2021
EXAMPLE
a(3) = 19 since the strings are composed of 000, the 6 permutations of 012, and the 3 permutations of 001, 002, 011 and 022. The total number of strings is then 1 + 6 + 3 + 3 + 3 + 3 = 19.
MATHEMATICA
CoefficientList[Series[Exp[x](Exp[x]-1)(2+2x+x^2)/2, {x, 0, 32}], x]Table[i!, {i, 0, 32}] (* Stefano Spezia, Jan 31 2021 *)
LinearRecurrence[{9, -33, 63, -66, 36, -8}, {0, 1, 5, 19, 61, 176}, 40] (* Harvey P. Dale, Mar 23 2022 *)
CROSSREFS
Sequence in context: A189714 A128638 A036630 * A102841 A036637 A036644
KEYWORD
nonn,easy
AUTHOR
Enrique Navarrete, Jan 30 2021
STATUS
approved