OFFSET
0,2
COMMENTS
A floretion-generated sequence relating the number of edges and faces in n-dimensional hypercube.
Equals A001787, (1, 4, 12, 32, 80, ...) convolved with A001045, the Jacobsthal sequence. - Gary W. Adamson, May 23 2009
The sum of the sizes of all inversions in compositions of n. - Arnold Knopfmacher, Jan 22 2020
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
M. Archibald, A. Blecher, A. Knopfmacher, M. E. Mays, Inversions and Parity in Compositions of Integers, J. Int. Seq., Vol. 23 (2020), Article 20.4.1.
Index entries for linear recurrences with constant coefficients, signature (5,-6,-4,8).
FORMULA
G.f.: 1/((1+x)*(1-2*x)^3).
a(n+1) - 2*a(n) = A045883(n+2).
a(n) + a(n+1) = A001788(n+2).
a(n) = 5*a(n-1) - 6*a(n-2) - 4*a(n-3) + 8*a(n-4). - Wesley Ivan Hurt, Jul 03 2020
MATHEMATICA
Table[(1/27)*((9 n^2 + 33 n + 26) 2^n + (-1)^n), {n, 0, 50}] (* or *) LinearRecurrence[{5, -6, -4, 8}, {1, 5, 19, 61}, 50] (* G. C. Greubel, Sep 27 2017 *)
PROG
(Magma) [((9*n^2 + 33*n + 26)*2^n + (-1)^n)/27 : n in [0..40]]; // Wesley Ivan Hurt, Jul 03 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
Creighton Dement, Feb 27 2005
EXTENSIONS
Corrected by T. D. Noe, Nov 08 2006
STATUS
approved