The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A338226 a(n) = Sum_{i=0..n-1} i*10^i - Sum_{i=0..n-1} (n-1-i)*10^i. 0
 0, 9, 198, 3087, 41976, 530865, 6419754, 75308643, 864197532, 9753086421, 108641975310, 1197530864199, 13086419753088, 141975308641977, 1530864197530866, 16419753086419755, 175308641975308644, 1864197530864197533, 19753086419753086422, 208641975308641975311, 2197530864197530864200 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Note that adding a constant k does not change the result: a(n) = (Sum_{i=0..n-1} (k+i) * 10^i) - (Sum_{i=0..n-1} (k+n-1-i) * 10^i). This means any set of consecutive numbers may be used to generate the terms. a(n) = A019566(n) for n <= 9. This is an alternate generalisation of A019566 beyond n=9. For two numbers A = Sum_{i=0..n-1} (x_i) * b^i and A' = Sum_{i=0..n-1} (x'_i) * b^i, A-A' is divisible by b-1 if Sum_{i=0..n-1} (x_i) = Sum_{i=0..n-1} (x'_i). x_i and x'_i are sets of integers. This is because b^i == 1 (mod b-1). In this specific case b=10, hence all terms are divisible by 9 and are given by a(n) = 9*A272525(n-1). LINKS Index entries for linear recurrences with constant coefficients, signature (22,-141,220,-100). FORMULA a(n) = A052245(n) - A014824(n). a(n+1) - a(n) = A033713(n+1). a(n) = ((9*n - 11)*10^n + (9*n + 11))/81. - Andrew Howroyd, Oct 26 2020 From Colin Barker, Oct 26 2020: (Start) G.f.: 9*x^2 / ((1 - x)^2*(1 - 10*x)^2). a(n) = 22*a(n-1) - 141*a(n-2) + 220*a(n-3) - 100*a(n-4) for n>4. (End) E.g.f.: exp(x)*(11 + 9*x + exp(9*x)*(90*x - 11))/81. - Stefano Spezia, Oct 27 2020 MATHEMATICA LinearRecurrence[{22, -141, 220, -100}, {0, 9, 198, 3087}, 21] (* Amiram Eldar, Oct 26 2020 *) PROG (PARI) concat(0, Vec(9*x^2 / ((1 - x)^2*(1 - 10*x)^2) + O(x^20))) \\ Colin Barker, Oct 27 2020 CROSSREFS Cf. A033713 (first differences), A019566 ("unique" numbers). Sequence in context: A180778 A110807 A019566 * A157563 A003026 A157594 Adjacent sequences:  A338223 A338224 A338225 * A338227 A338228 A338229 KEYWORD nonn,base,easy AUTHOR Abhinav S. Sharma, Oct 17 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 24 03:15 EDT 2021. Contains 347623 sequences. (Running on oeis4.)