login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A338223
G.f.: (1 / theta_4(x) - 1)^2 / 4, where theta_4() is the Jacobi theta function.
10
1, 4, 12, 30, 68, 144, 289, 556, 1034, 1868, 3292, 5678, 9608, 15984, 26188, 42314, 67509, 106460, 166090, 256552, 392628, 595696, 896484, 1338894, 1985298, 2923840, 4278448, 6222518, 8997544, 12938368, 18507297, 26340040, 37307326, 52597320, 73825504, 103180702
OFFSET
2,2
LINKS
FORMULA
G.f.: (1/4) * (-1 + Product_{k>=1} (1 + x^k) / (1 - x^k))^2.
a(n) = Sum_{k=0..n} A014968(k) * A014968(n-k).
a(n) = (1/4) * Sum_{k=1..n-1} A015128(k) * A015128(n-k).
a(n) = (A001934(n) - 2 * A015128(n)) / 4 for n > 0.
MAPLE
g:= proc(n, i) option remember; `if`(n=0, 1/2, `if`(i=1, 0,
g(n, i-1))+add(2*g(n-i*j, i-1), j=`if`(i=1, n, 1)..n/i))
end:
b:= proc(n, k) option remember; `if`(k=0, 1, `if`(k=1, `if`(n=0, 0,
g(n$2)), (q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2))))
end:
a:= n-> b(n, 2):
seq(a(n), n=2..37); # Alois P. Heinz, Feb 10 2021
MATHEMATICA
nmax = 37; CoefficientList[Series[(1/EllipticTheta[4, 0, x] - 1)^2/4, {x, 0, nmax}], x] // Drop[#, 2] &
nmax = 37; CoefficientList[Series[(1/4) (-1 + Product[(1 + x^k)/(1 - x^k), {k, 1, nmax}])^2, {x, 0, nmax}], x] // Drop[#, 2] &
A015128[n_] := Sum[PartitionsP[k] PartitionsQ[n - k], {k, 0, n}]; a[n_] := (1/4) Sum[A015128[k] A015128[n - k], {k, 1, n - 1}]; Table[a[n], {n, 2, 37}]
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jan 30 2021
STATUS
approved