login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f.: (1 / theta_4(x) - 1)^2 / 4, where theta_4() is the Jacobi theta function.
10

%I #11 Feb 10 2021 11:41:30

%S 1,4,12,30,68,144,289,556,1034,1868,3292,5678,9608,15984,26188,42314,

%T 67509,106460,166090,256552,392628,595696,896484,1338894,1985298,

%U 2923840,4278448,6222518,8997544,12938368,18507297,26340040,37307326,52597320,73825504,103180702

%N G.f.: (1 / theta_4(x) - 1)^2 / 4, where theta_4() is the Jacobi theta function.

%H Alois P. Heinz, <a href="/A338223/b338223.txt">Table of n, a(n) for n = 2..10000</a>

%F G.f.: (1/4) * (-1 + Product_{k>=1} (1 + x^k) / (1 - x^k))^2.

%F a(n) = Sum_{k=0..n} A014968(k) * A014968(n-k).

%F a(n) = (1/4) * Sum_{k=1..n-1} A015128(k) * A015128(n-k).

%F a(n) = (A001934(n) - 2 * A015128(n)) / 4 for n > 0.

%p g:= proc(n, i) option remember; `if`(n=0, 1/2, `if`(i=1, 0,

%p g(n, i-1))+add(2*g(n-i*j, i-1), j=`if`(i=1, n, 1)..n/i))

%p end:

%p b:= proc(n, k) option remember; `if`(k=0, 1, `if`(k=1, `if`(n=0, 0,

%p g(n$2)), (q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2))))

%p end:

%p a:= n-> b(n, 2):

%p seq(a(n), n=2..37); # _Alois P. Heinz_, Feb 10 2021

%t nmax = 37; CoefficientList[Series[(1/EllipticTheta[4, 0, x] - 1)^2/4, {x, 0, nmax}], x] // Drop[#, 2] &

%t nmax = 37; CoefficientList[Series[(1/4) (-1 + Product[(1 + x^k)/(1 - x^k), {k, 1, nmax}])^2, {x, 0, nmax}], x] // Drop[#, 2] &

%t A015128[n_] := Sum[PartitionsP[k] PartitionsQ[n - k], {k, 0, n}]; a[n_] := (1/4) Sum[A015128[k] A015128[n - k], {k, 1, n - 1}]; Table[a[n], {n, 2, 37}]

%Y Cf. A001934, A002448, A014968, A015128, A048574, A063725, A327380.

%K nonn

%O 2,2

%A _Ilya Gutkovskiy_, Jan 30 2021