login
A118425
Number of binary sequences of length n containing exactly one subsequence 001.
2
0, 0, 0, 1, 4, 12, 30, 68, 144, 291, 568, 1080, 2012, 3688, 6672, 11941, 21180, 37284, 65210, 113420, 196320, 338375, 581040, 994416, 1696824, 2887632, 4902240, 8304073, 14038324, 23688636, 39905238, 67118420, 112726512, 189072363
OFFSET
0,5
COMMENTS
With an additional 0 at the beginning, the convolution of A000071 with itself. Column 1 of A118424.
FORMULA
G.f.=z^3/(1-2z+z^3)^2.
EXAMPLE
a(4)=4 because we have 0010, 0011, 0001 and 1001.
MAPLE
g:=z^3/(1-2*z+z^3)^2: gser:=series(g, z=0, 40): seq(coeff(gser, z, n), n=0..38);
CROSSREFS
Sequence in context: A032192 A212587 A338223 * A097809 A272144 A036389
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Apr 27 2006
STATUS
approved