OFFSET
0,4
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (4,-4,-2,5,-2).
FORMULA
a(n) = 4*a(n-1) - 4*a(n-2) - 2*a(n-3) + 5*a(n-4) - 2*a(n-5).
G.f.: x^2/((1-x)^3*(1+x)*(1-2*x)).
a(n+2) = (-105+(-1)^n+2^(7+n)-48*n-6*n^2)/24. - Colin Barker, Apr 21 2016
E.g.f.: (exp(-x) + 32*exp(2*x) - 3*(11 + 10*x + 2*x^2)*exp(x))/24. - Ilya Gutkovskiy, Apr 21 2016
MAPLE
seq(coeff(series(x^2/((1-x)^3*(1+x)*(1-2*x)), x, n+1), x, n), n = 0 .. 35); # Muniru A Asiru, Oct 26 2018
MATHEMATICA
CoefficientList[Series[x^2/((1 - x)^3 (1 + x) (1 - 2 x)), {x, 0, 30}], x] (* Michael De Vlieger, Apr 21 2016 *)
PROG
(PARI) concat([0, 0], Vec(x^2/((1-x)^3*(1+x)*(1-2*x)) + O(x^40))) \\ Altug Alkan, Apr 21 2016
(Magma) m:=40; R<x>:=PowerSeriesRing(Integers(), m); [0, 0] cat Coefficients(R!(x^2/((1-x)^3*(1+x)*(1-2*x)))); // G. C. Greubel, Oct 26 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Patrick Okolo Edeogu, Apr 21 2016
STATUS
approved