login
A272144
Convolution of A000217 and A001045.
2
0, 0, 1, 4, 12, 30, 69, 150, 316, 652, 1329, 2688, 5412, 10866, 21781, 43618, 87300, 174672, 349425, 698940, 1397980, 2796070, 5592261, 11184654, 22369452, 44739060, 89478289, 178956760, 357913716, 715827642, 1431655509, 2863311258, 5726622772
OFFSET
0,4
FORMULA
a(n) = Sum{k=0..n} A000217(k) * A001045(n-k). - Joerg Arndt, May 17 2016
a(n) = 4*a(n-1) - 4*a(n-2) - 2*a(n-3) + 5*a(n-4) - 2*a(n-5).
G.f.: x^2/((1-x)^3*(1+x)*(1-2*x)).
a(n+2) = (-105+(-1)^n+2^(7+n)-48*n-6*n^2)/24. - Colin Barker, Apr 21 2016
E.g.f.: (exp(-x) + 32*exp(2*x) - 3*(11 + 10*x + 2*x^2)*exp(x))/24. - Ilya Gutkovskiy, Apr 21 2016
EXAMPLE
a(4) = 12 = 0*10+1*6+1*3+3*1+5*0 from A000217: 0,1,3,6,10,... and A001045: 0,1,1,3,5,11,...
MAPLE
seq(coeff(series(x^2/((1-x)^3*(1+x)*(1-2*x)), x, n+1), x, n), n = 0 .. 35); # Muniru A Asiru, Oct 26 2018
MATHEMATICA
CoefficientList[Series[x^2/((1 - x)^3 (1 + x) (1 - 2 x)), {x, 0, 30}], x] (* Michael De Vlieger, Apr 21 2016 *)
PROG
(PARI) concat([0, 0], Vec(x^2/((1-x)^3*(1+x)*(1-2*x)) + O(x^40))) \\ Altug Alkan, Apr 21 2016
(Magma) m:=40; R<x>:=PowerSeriesRing(Integers(), m); [0, 0] cat Coefficients(R!(x^2/((1-x)^3*(1+x)*(1-2*x)))); // G. C. Greubel, Oct 26 2018
CROSSREFS
Partial Sums of A011377(n-2)=A178420(n-1).
Sequence in context: A338223 A118425 A097809 * A036389 A037166 A118892
KEYWORD
nonn,easy
AUTHOR
STATUS
approved