login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A048574
Self-convolution of 1 2 3 5 7 11 15 22 30 42 56 77 ... (A000041).
17
1, 4, 10, 22, 43, 80, 141, 240, 397, 640, 1011, 1568, 2395, 3604, 5360, 7876, 11460, 16510, 23588, 33418, 47006, 65640, 91085, 125596, 172215, 234820, 318579, 430060, 577920, 773130, 1030007, 1366644, 1806445, 2378892, 3121835, 4082796
OFFSET
2,2
COMMENTS
Number of proper partitions of n into parts of two kinds (i.e. both kinds must be present). - Franklin T. Adams-Watters, Feb 08 2006
LINKS
FORMULA
From Franklin T. Adams-Watters, Feb 08 2006: (Start)
a(0) = 0, a(n) = A000712(n)-2*A000041(n) for n>0.
a(n) = Sum_{k=1..n-1} A000041(k)*A000041(n-k).
G.f.: ((Product_{k>0} 1/(1-x^k))-1)^2 = (exp(Sum_{k>0} (x^k/(1-x^k)/k))-1)^2. (End)
a(n) ~ exp(2*Pi*sqrt(n/3)) / (4*3^(3/4)*n^(5/4)). - Vaclav Kotesovec, Mar 10 2018
EXAMPLE
a(4) = 22 because (1,2,3,5)*(5,3,2,1) = 5 + 6 + 6 + 5 = 22
MAPLE
spec := [S, {C=Sequence(Z, 1 <= card), B=Set(C, 1 <= card), S=Prod(B, B)}, unlabeled]: seq(combstruct[count](spec, size=n), n=0..20); # Franklin T. Adams-Watters, Feb 08 2006
# second Maple program:
a:= n-> (p-> add(p(j)*p(n-j), j=1..n-1))(combinat[numbpart]):
seq(a(n), n=2..40); # Alois P. Heinz, May 26 2018
MATHEMATICA
a[n_] := First[ ListConvolve[ pp = Array[ PartitionsP, n], pp]]; Table[ a[n], {n, 1, 36}] (* Jean-François Alcover, Oct 21 2011 *)
Table[ListConvolve[PartitionsP[Range[n]], PartitionsP[Range[n]]], {n, 40}]// Flatten (* Harvey P. Dale, Oct 29 2020 *)
PROG
(Haskell)
a048574 n = a048574_list !! (n-2)
a048574_list = f (drop 2 a000041_list) [1] where
f (p:ps) rs = (sum $ zipWith (*) rs $ tail a000041_list) : f ps (p : rs)
-- Reinhard Zumkeller, Nov 09 2015
(PARI) a(n) = sum(k=1, n-1, numbpart(k)*numbpart(n-k)); \\ Michel Marcus, Dec 11 2016
CROSSREFS
Essentially the same as A052837.
Cf. A122768.
Column k=2 of A060642.
Sequence in context: A006001 A034357 A023626 * A052837 A052821 A292445
KEYWORD
easy,nice,nonn
AUTHOR
EXTENSIONS
More terms from Larry Reeves (larryr(AT)acm.org), Sep 29 2000
STATUS
approved