OFFSET
0,2
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..200
Xiaomei Chen, Yuan Xiang, Counting generalized Schröder paths, arXiv:2009.04900 [math.CO], 2020.
FORMULA
G.f.: (sqrt(1-10x+25x^2-16x^3)+3x-1)/(2x(2x-1)).
Conjecture: (n+1)*a(n) +3*(1-4n)*a(n-1) +15*(3n-4)*a(n-2) +6*(26-11n)*a(n-3) +16*(2n-7)*a(n-4)=0. - R. J. Mathar, Nov 17 2011
a(n) = Sum_{k, 0<=k<=n} A091866(n,k)*2^k. - Philippe Deléham, Nov 27 2011
a(n) ~ sqrt(7*sqrt(17)-17)*((9+sqrt(17))/2)^n/(2*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 24 2012
From Vladimir Kruchinin, Jan 25 2020: (Start)
a(n) = Sum_{j=0..n} Sum_{i=0..j} C(j+1, i)*C(2*j-i, j-i)*C(n-j+i-1,n-j) /(j+1)*2^(n-j).
a(n) = Sum_{i=0..n-1} a(i)*(2^(n-i-1)+a(n-i-1)). (End)
MATHEMATICA
CoefficientList[Series[(Sqrt[1-10*x+25*x^2-16*x^3]+3*x-1)/(2*x*(2*x-1)), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 24 2012 *)
PROG
(Maxima)
a(n):=sum(sum(binomial(j+1, i)*binomial(2*j-i, j-i)*binomial(n-j+i-1, n-j), i, 0, j)/(j+1)*2^(n-j), j, 0, n); /* Vladimir Kruchinin, Jan 25 2020 */
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul Barry, Feb 18 2011
STATUS
approved