login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A186335
A transform of the central binomial coefficients.
2
1, 1, 4, 7, 21, 46, 127, 309, 832, 2131, 5709, 15010, 40281, 107423, 289314, 778087, 2103361, 5687938, 15427099, 41880357, 113912236, 310148223, 845598389, 2307657222, 6304306171, 17237338021, 47170965082, 129181447969, 354027263457, 970851960736, 2664008539017
OFFSET
0,3
COMMENTS
Hankel transform is (-1)^n*A128056(n).
FORMULA
a(n)=sum{k=0..n, sum{j=0..n, binomial(k-j,n-k-j)*binomial(k,j)*A000984(n-k-j)}}.
Conjecture: n*a(n) +(-2*n+1)*a(n-1) +5*(-n+1)*a(n-2) +3*(2*n-3)*a(n-3) +5*(n-2)*a(n-4)=0. - R. J. Mathar, Feb 13 2015
a(n) ~ ((1+sqrt(21))/2)^(n + 3/2) / (2 * 21^(1/4) * sqrt(Pi*n)) . - Vaclav Kotesovec, Oct 30 2017
MAPLE
A186335 := proc(n)
add(add(binomial(k-j, n-k-j)*binomial(k, j)*A000984(n-k-j), j=0..n), k=0..n) ;
end proc: # R. J. Mathar, Feb 13 2015
MATHEMATICA
Table[Sum[Sum[Binomial[k-j, n-k-j]*Binomial[k, j]*Binomial[2*(n-k-j), n-k-j], {j, 0, n}], {k, 0, n}], {n, 0, 40}] (* Vaclav Kotesovec, Oct 30 2017 *)
CROSSREFS
Sequence in context: A255512 A039959 A320663 * A010363 A119561 A228015
KEYWORD
nonn,easy
AUTHOR
Paul Barry, Feb 18 2011
STATUS
approved