login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A039959
Number of ways of numbering the vertices of a cube so sum of the 8 numbers is n.
1
1, 1, 4, 7, 21, 37, 85, 151, 292, 490, 848, 1346, 2157, 3260, 4925, 7148, 10327, 14477, 20177, 27483, 37194, 49431, 65277, 84945, 109873, 140394, 178377, 224334, 280647, 348040, 429526, 526108, 641524, 777127, 937513, 1124461, 1343567, 1597115, 1891850
OFFSET
0,3
COMMENTS
In Redfield 1927 on page 443 he writes "If in V we put 1/(1-x^r) for every s_r, we obtain the infinite series 1 + x + 4x^2 + 7x^3 + 21x^4 + 37x^5 + ..., in which the coefficient of x^t enumerates the distinct configurations obtained by placing a zero or a positive integer at every vertex of the cube, subject to the condition that the sum of the 8 numbers is always t.". - Michael Somos, Oct 17 2015
Note that the enumeration is modded out by the symmetries of the cube. - Michael Somos, Oct 17 2015
REFERENCES
J. H. Redfield, The theory of group-reduced distributions, Amer. J. Math., 49 (1927), 433-455; reprinted in P. A. MacMahon, Coll. Papers I, pp. 805-827.
FORMULA
G.f.: (x^12 - x^11 + x^10 + 6*x^8 + x^7 + 8*x^6 + x^5 + 6*x^4 + x^2 - x + 1) / ((1 - x) * (1 - x^2) * (1 - x^3) * (1 - x^4))^2. - Michael Somos, Mar 05 2004
G.f.: (1/24) * (1 - x)^-8 + (3/8) * (1 - x^2)^-4 + (1/3) * (1 - x)^-2 * (1 - x^3)^-2 + (1/4) * (1 - x^4)^-2. - Michael Somos, Oct 17 2015
a(n) = -a(-8 - n) for all n in Z. - Michael Somos, Oct 17 2015
EXAMPLE
For n=2 the 4 ways are: {0000 0002}, {0000 0011}, {0001 0100}, {0001 1000}.
G.f. = 1 + x + 4*x^2 + 7*x^3 + 21*x^4 + 37*x^5 + 85*x^6 + 151*x^7 + 292*x^8 + ...
MAPLE
1/24/(1-x)^8+3/8/(1-x^2)^4+1/3/(1-x^3)^2/(1-x)^2+1/4/(1-x^4)^2;
MATHEMATICA
a[ n_] := Ceiling[ (3 n^7 + 84 n^6 + 966 n^5 + 5880 n^4 + If[ OddQ@n, 22547 n^3 + 66276 n^2, 25382 n^3 + 100296 n^2] + 12 n (10547 + 35 If[ OddQ@n, If[ Mod[n, 6] < 5, 32, 0], If[ Mod[n, 6] == 2, 297, 329] + 54 Boole[Mod[n, 4] == 0]]) + 1) / 362880]; (* Michael Somos, Oct 17 2015 *)
PROG
(PARI) {a(n) = if( n<-4, -a(-8 - n), polcoeff( subst( Pol([ 1, -1, -5, 5, 11, -4, -4]), x, x + 1/x) * x^6 / prod(k=1, 4, 1 - x^k)^2 + x * O(x^n), n))}; /* Michael Somos, Mar 05 2004 */
(PARI) {a(n) = ceil( (3*n^7 + 84*n^6 + 966*n^5 + 5880*n^4 + if( n%2, 22547*n^3 + 66276*n^2, 25382*n^3 + 100296*n^2) + 12*n * (10547 + 35 * if( n%2, if( n%6<5, 32, 0), if( n%6==2, 297, 329) + 54*(n%4==0))) + 1) / 362880)}; /* Michael Somos, Oct 17 2015 */
CROSSREFS
Sequence in context: A368185 A359603 A255512 * A320663 A186335 A010363
KEYWORD
nonn
STATUS
approved