login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A359603
Dirichlet inverse of function f(n) = 1+(A003415(n)*A276086(n)), where A003415 is the arithmetic derivative and A276086 is the primorial base exp-function.
7
1, -4, -7, -21, -19, 30, -11, 51, -132, -164, -91, -11, -51, -588, -935, -5904, -451, -1402, -251, -5979, -7347, -13898, -2251, -25507, -12140, -27718, -99060, -174307, -11251, 11610, -15, 52653, 685, 2410, -1095, 24800, -71, -198, -2647, 53673, -631, 61020, -351, 94173, -20052, -21368, -3151, 207838
OFFSET
1,2
FORMULA
a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, d<n} (1+A358669(n/d)) * a(d).
PROG
(PARI)
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
A358669(n) = (A003415(n)*A276086(n));
memoA359603 = Map();
A359603(n) = if(1==n, 1, my(v); if(mapisdefined(memoA359603, n, &v), v, v = -sumdiv(n, d, if(d<n, (1+A358669(n/d))*A359603(d), 0)); mapput(memoA359603, n, v); (v)));
CROSSREFS
Cf. A003415, A276086, A358669, A359590 (parity of terms), A359604 [= a(n) mod 60].
Cf. also A359427, A359589.
Sequence in context: A220004 A367911 A368185 * A255512 A039959 A320663
KEYWORD
sign,easy
AUTHOR
Antti Karttunen, Jan 11 2023
STATUS
approved