login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A359427
Dirichlet inverse of A358764.
4
1, -2, -3, -2, -9, 8, -5, 6, -6, 6, -45, -4, -25, -30, -21, -130, -225, -70, -125, -130, -345, -570, -1125, -480, -544, -1150, -1812, -3550, -5625, 222, -7, 530, 249, 858, 27, 418, -35, 430, 45, 610, -315, 1520, -175, 2650, -48, 3450, -1575, 2060, -850, 804, -1275, -250, -7875, 4288, -3565, 6150, -12375
OFFSET
1,2
FORMULA
a(n) = A359428(n) - A358764(n).
PROG
(PARI)
up_to = 11550;
DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(d<n, v[n/d]*u[d], 0)))); (u) }; \\ Compute the Dirichlet inverse of the sequence given in input vector v.
A032742(n) = if(1==n, n, n/vecmin(factor(n)[, 1]));
A060681(n) = (n-A032742(n));
A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
v359427 = DirInverseCorrect(vector(up_to, n, A358764(n)));
A359427(n) = v359427[n];
CROSSREFS
Cf. A056911 (positions of odd terms), A323239 (parity of terms), A337945.
Cf. also A342417.
Sequence in context: A215269 A352485 A356092 * A336246 A351251 A362988
KEYWORD
sign,base
AUTHOR
Antti Karttunen, Jan 02 2023
STATUS
approved