login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A359429
a(n) = 1 if n is cubefree, but not squarefree, otherwise 0.
2
0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1
OFFSET
1
FORMULA
a(n) = A107078(n) * A212793(n) = A212793(n) - A008966(n).
a(n) = [A072411(n) == 2] = [A290107(n) == 2], where [ ] is the Iverson bracket.
a(n) >= A359474(n).
Sum_{k=1..n} a(k) ~ c * n, where c = 1/zeta(3) - 1/zeta(2) = A088453 - A059956 = 0.22398... . - Amiram Eldar, Jan 05 2023
MATHEMATICA
a[n_] := If[Max[FactorInteger[n][[;; , 2]]] == 2, 1, 0]; Array[a, 100] (* Amiram Eldar, Jan 05 2023 *)
PROG
(PARI)
A212793(n) = {f = factor(n); for (i=1, #f~, if ((f[i, 2]) >=3, return(0)); ); return (1); }; \\ From A212793.
A359429(n) = (A212793(n)-issquarefree(n));
CROSSREFS
Characteristic function of A067259.
Sequence in context: A284954 A221151 A359474 * A353470 A342753 A358752
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jan 04 2023
STATUS
approved