login
A359432
Dirichlet inverse of A327936, which is multiplicative sequence with a(p^e) = p if e >= p, otherwise 1.
4
1, -1, -1, -1, -1, 1, -1, 1, 0, 1, -1, 1, -1, 1, 1, 1, -1, 0, -1, 1, 1, 1, -1, -1, 0, 1, -2, 1, -1, -1, -1, -1, 1, 1, 1, 0, -1, 1, 1, -1, -1, -1, -1, 1, 0, 1, -1, -1, 0, 0, 1, 1, -1, 2, 1, -1, 1, 1, -1, -1, -1, 1, 0, -1, 1, -1, -1, 1, 1, -1, -1, 0, -1, 1, 0, 1, 1, -1, -1, -1, 2, 1, -1, -1, 1, 1, 1, -1, -1, 0, 1, 1, 1, 1, 1, 1, -1, 0, 0, 0, -1, -1, -1, -1, -1, 1, -1, 2
OFFSET
1,27
COMMENTS
Multiplicative because A327936 is.
LINKS
FORMULA
Multiplicative with a(p^e) = (1 - p)^(e/p) if p | e, -(1 - p)^((e - 1)/p) if e == 1 (mod p), and 0 otherwise. - Amiram Eldar, Jan 26 2023
MATHEMATICA
f[p_, e_] := Switch[Mod[e, p], 0, (1 - p)^(e/p), 1, -(1 - p)^((e - 1)/p), _, 0]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Table[a[n], {n, 1, 100}] (* Amiram Eldar, Jan 26 2023 *)
PROG
(PARI)
A327936(n) = { my(f = factor(n)); for(k=1, #f~, f[k, 2] = (f[k, 2]>=f[k, 1])); factorback(f); };
memoA359432 = Map();
A359432(n) = if(1==n, 1, my(v); if(mapisdefined(memoA359432, n, &v), v, v = -sumdiv(n, d, if(d<n, A327936(n/d)*A359432(d), 0)); mapput(memoA359432, n, v); (v)));
CROSSREFS
Cf. A327936.
Cf. A038838 (positions of even terms), A122132 (of odd terms), A353627 (parity of terms).
Cf. also A358216, A359433.
Sequence in context: A268643 A005094 A121372 * A338639 A249351 A123706
KEYWORD
sign,mult
AUTHOR
Antti Karttunen, Jan 02 2023
STATUS
approved