login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A121372
Triangle, read by rows of length A003056(n) for n >= 1, defined by the recurrence: T(n,k) = T(n-k,k-1) - T(n-k,k) for n > k > 1, with T(n,1) =(-1)^(n-1) for n >= 1.
1
1, -1, 1, 1, -1, -1, 1, 0, -1, 0, 1, 1, 1, -1, -1, -1, 0, 1, 0, -1, -1, 0, 2, 1, 1, 1, -1, -1, -1, -1, 1, 0, 1, 0, -2, -1, -1, 0, 2, 1, 1, 1, -2, 0, 1, -1, -1, 2, 1, -1, 1, 0, -2, -1, 0, -1, 0, 3, 1, -1, 1, 1, -3, -2, 1, -1, -1, 2, 1, -1, 1, 0, -3, -1, 2, 1, -1, 0, 4, 2, -1, -1, 1, 1, -3, -1, 2, 0, -1, -1, 3, 1, -3, -1, 1, 0, -4, -2, 2, 1, -1, 0, 4, 2, -3
OFFSET
1,23
COMMENTS
Row sums equal A003406 (offset 1), the expansion of Ramanujan's function: R(x) = 1 + Sum_{n>=1} (x^(n*(n+1)/2) / ((1+x)(1+x^2)(1+x^3)...(1+x^n))).
LINKS
FORMULA
G.f. of column k: x^(k*(k+1)/2) / ((1+x)(1+x^2)(1+x^3)...(1+x^k)) for k >= 1.
EXAMPLE
Triangle begins:
1;
-1;
1, 1;
-1, -1;
1, 0;
-1, 0, 1;
1, 1, -1;
-1, -1, 0;
1, 0, -1;
-1, 0, 2, 1;
1, 1, -1, -1;
-1, -1, 1, 0;
1, 0, -2, -1;
-1, 0, 2, 1;
1, 1, -2, 0, 1;
-1, -1, 2, 1, -1;
1, 0, -2, -1, 0;
-1, 0, 3, 1, -1;
1, 1, -3, -2, 1;
-1, -1, 2, 1, -1;
1, 0, -3, -1, 2, 1;
-1, 0, 4, 2, -1, -1;
1, 1, -3, -1, 2, 0;
-1, -1, 3, 1, -3, -1;
1, 0, -4, -2, 2, 1;
-1, 0, 4, 2, -3, -1;
1, 1, -4, -2, 3, 1;
-1, -1, 4, 2, -3, 0, 1;
1, 0, -4, -2, 4, 2, -1;
-1, 0, 5, 2, -4, -2, 0;
1, 1, -5, -2, 5, 1, -1;
-1, -1, 4, 2, -5, -2, 1;
1, 0, -5, -2, 5, 2, -1;
-1, 0, 6, 3, -6, -3, 1;
1, 1, -5, -3, 6, 2, -1;
-1, -1, 5, 2, -7, -2, 3, 1;
...
PROG
(PARI) {T(n, k)=if(n<k||k<1, 0, if(n==1, 1, T(n-k, k-1)-T(n-k, k)))}
(PARI) /* Using generating formula for columns */
{tr(n) = floor((sqrt(1+8*n)-1)/2)} \\ number of terms in row n
{T(n, k) = polcoeff( x^(k*(k+1)/2) / prod(j=1, k, 1 + x^j +x*O(x^n)), n)}
{for(n=1, 50, for(k=1, tr(n), print1(T(n, k), ", ")); print(""))} \\ Paul D. Hanna, Jan 28 2024
CROSSREFS
Sequence in context: A056980 A268643 A005094 * A359432 A338639 A249351
KEYWORD
sign,tabf
AUTHOR
Paul D. Hanna, Jul 24 2006
STATUS
approved