login
A056980
Number of blocks of {1, 1, 0} in binary expansion of n.
11
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 2
OFFSET
1,54
LINKS
Eric Weisstein's World of Mathematics, Digit Block.
FORMULA
a(2n) = a(n) + [n congruent to 3 mod 4], a(2n+1) = a(n). - Ralf Stephan, Aug 22 2003
a(n) = A213629(n,6) for n > 5. - Reinhard Zumkeller, Jun 17 2012
MATHEMATICA
a[1] = a[2] = 0; a[n_] := a[n] = If[OddQ[n], a[(n - 1)/2], a[n/2] + Boole[Mod[n/2, 4] == 3]]; Table[a[n], {n, 1, 102}] (* Jean-François Alcover, Oct 22 2012, after Ralf Stephan *)
PROG
(Haskell)
import Data.List (tails, isPrefixOf)
a056980 = sum . map (fromEnum . ([0, 1, 1] `isPrefixOf`)) .
tails . a030308_row
-- Reinhard Zumkeller, Jun 17 2012
(PARI)
a(n) = hammingweight(bitnegimply(bitand(n>>1, n>>2), n));
vector(102, i, a(i)) \\ Gheorghe Coserea, Sep 07 2015
KEYWORD
nonn,easy,base
STATUS
approved