login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A056974
Number of blocks of {0, 0, 0} in the binary expansion of n.
10
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 3, 2, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 4, 3, 2, 2, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 3, 2, 1, 1, 0, 0, 0
OFFSET
1,16
COMMENTS
Overlaps count. For example, 64 in binary is 1000000, which means that a(64) = 4, not 2. - Harvey P. Dale, Jan 10 2016
FORMULA
a(1) = 0, and then after, a(2n) = a(n) + [n congruent to 0 mod 8], a(2n+1) = a(n). - Ralf Stephan, Aug 22 2003, corrected by Antti Karttunen, Oct 10 2017
MATHEMATICA
a[n_, bits_] := (idn = IntegerDigits[n, 2]; ln = Length[idn]; lb = Length[bits]; For[cnt = 0; k = 1, k <= ln - lb + 1, k++, If[idn[[k ;; k + lb - 1]] == bits, cnt++]]; cnt); Table[ a[n, {0, 0, 0}], {n, 1, 102} ] (* Jean-François Alcover, Oct 23 2012 *)
Table[SequenceCount[IntegerDigits[n, 2], {0, 0, 0}, Overlaps->True], {n, 110}] (* The program uses the SequenceCount function from Mathematica version 10 *) (* Harvey P. Dale, Jan 10 2016 *)
PROG
(PARI) a(n)=my(v=binary(n)); sum(i=3, #v, v[i]+v[i-1]+v[i-2]==0) \\ Charles R Greathouse IV, Dec 07 2011
(PARI)
a(n) = {
my(x = bitor(n, bitor(n>>1, n>>2)));
if (x == 0, 0, 1 + logint(x, 2) - hammingweight(x))
};
vector(102, i, a(i)) \\ Gheorghe Coserea, Sep 17 2015
(Scheme)
;; This uses Ralf Stephan's recurrence and memoization-macro definec:
(definec (A056974 n) (cond ((= 1 n) 0) ((even? n) (+ (if (zero? (modulo n 8)) 1 0) (A056974 (/ n 2)))) (else (A056974 (/ (- n 1) 2))))) ;; Antti Karttunen, Oct 10 2017
KEYWORD
nonn,base,easy
STATUS
approved